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Physics 228, Lecture 14

Thursday, March 10, 2005

Hydrogen Atom; Spin. Ch. 40:5, 41:1,3
Copyright c©2003 by Joel A. Shapiro

As we discussed last week, there were several early models of atomic struc-
ture, of which only the Rutherford model retains even qualitatively relevant
features today. The Rutherford model pictured the electrons in large orbits
about a very small nucleus in which all the positive charge resides. There
are some problems with this classical model, however, in particular that the
electrons ought to radiate electromagnetic waves, losing energy and spiralling
into the nucleus. We saw how Bohr added some rather ad-hoc rules to the
classical picture. Bohr suggested that the electrons follow orbits obeying the
laws of classical mechanics, including Coulomb’s law, but not radiating as
Maxwell’s equations would imply. In addition, the possible orbits were lim-
ited by a quantization condition on the angular momentum, which we later
understood as related to standing wave conditions on the de Broglie waves.
The classical mechanics is simple only for a single electron around a nucleus,
so we worked this out for a hydrogen atom. We could have also considered
hydrogen-like ions, a nucleus with charge Ze stripped of all but one of its
electrons. For example, a He+ ion has a nucleus with Z = 2 and a single
electron. Then the electron experiences a potential energy from Coulomb:

U(r) = −ke
Ze2

r
.

This multiplies the force by Z, divides the Bohr radii rn by Z, multiplies the
velocity vn by Z, and the Bohr energy levels by Z2. Thus the circular orbits
obeying the quantization condition L = nh̄ have energies

En = −k
2
ee

4me

2h̄2

Z2

n2
= −kee

2

2a0

Z2

n2
.

This model gave a quite good explanation of the spectrum of hydrogen and
hydrogen-like ions. But there were a number of details it left out, and it was
not really a consistent theoretical framework. With the invention of a really
quantum mechanical theory, the picture of the atom changed.
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1 States of the Hydrogen Atom

To describe the hydrogen model properly we need to solve Schrödinger’s
equation for the electron in the presence of the Coulomb potential. Of course
the electron can move in three dimensions, so the equation is quite a bit more
complicated than the particle in the box we considered. We need to solve
the partial differential equation

− h̄2

2m
~∇ · ~∇ψ(~r)− ke

Ze2

|r| ψ(~r) = Eψ(~r),

where the laplacian ~∇ · ~∇ in cartesian coordinates is

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

Because the situation has a rotational symmetry, however, this problem is
best handled using spherical coordinates, so the wave function is

ψ(r, θ, φ).

Due to the spherical symmetry of the problem, the stationary states are
described by wave functions which are products of a function of radius R(r)
and a function of the angles. Some of the states are spherically symmetric,
so there is no dependence on θ and φ, but only on r. As for the particle
in the box, there is a series of such functions indexed by an integer n =
1, 2, 3.... This integer is called the principal quantum number, and these
spherically symmetric states of the atom are known as s states.

Not all the states are spherically symmetric, however, because the electron
can have a angular momentum around the nucleus. As in the Bohr atom,
the angular momentum is quantized, but this quantization is not an ad-hoc
assumption but comes out of solving the Schrödinger equation. The orbital
angular momentum of the electron is described by the orbital quantum
number ` which determines the magnitude of the angular momentum, and
another integer (called the orbital magnetic quantum number) m`. The
word magnetic in the name only has to do with how it is measured; m`

actually tells us all we can know quantum mechanically about the direction
of the angular momentum. There are restrictions on these quantum numbers.
All are integers, and:

n ≥ 1, 0 ≤ ` ≤ n− 1, −` ≤ m ≤ `,
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so for a given value of n (which can be any positive integer), there are n
possible values for `: 0, 1, ...n − 1, and for each value of n and `, there are
2`+ 1 possible values of m`: m` = −`,−`+ 1, ..., 0, ...`.

It turns out that for the solution of Schrödinger’s equation for the hydro-
gen atom, the energy of the state with quantum numbers n, `, and m` only
depends on the principal quantum number n and is what Bohr said:

En = −13.606
Z2

n2
eV. (Z = 1 for hydrogen).

All the states with a given n are said to form a shell. These have pecular
one-capital-letter names beginning with K, but for most purposes the shell
is referred to by its n value. All the states with a given n and a given ` are
called a subshell, and they have more pecular one-lower-case-letter names
s, p, d, f , g, h. The letter names of subshells are important to know, because
they are used to describe the electronic structure of atoms. Thus the three
states with n = 2, ` = 1 are referred to as the 2p subshell.

2 Spin

Planets going around the sun revolve anound the sun, with an orbital angular
momentum ~r × ~p. They also rotate about their own axis, with additional
angular momentum. Elementary particles do that too, and the additional
angular momentum is called the particle’s spin.

The spatial dependence of the wavefunction is completely described by
the three quantum numbers n, `, and m`, and those describe quantum me-
chanically the orbit of the electron. But it turns out that the electron has
some other motion as well. All evidence points to an electron being a point
particle rather than an extended object, but nonetheless it can spin about
its own center, somewhat like a baseball or a planet. To specify its state, the

wave function must depend not only on its position
in space but also on the direction of its spin. Unlike
a baseball, however, an electron can only spin at one
speed, and in one of two directions, up and down.

S&B 42.5
spinning
electron
3” × 2 3/4”

This is a little confusing — it does not mean that two directions are spe-
cial, and an electron can’t spin along the positive x axis. Rather it is like the
polarization of a photon, where the photon can be polarized in any direction,
but these are not independent states for directions not perpendicular to each
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other. For electrons, we pick some direction arbitrarily, and then the electron
can have a spin of ±1

2
h̄ in that direction, two possibilities described by the

spin magnetic quantum number ms = ±1
2
.

The quantum numbers n, `, m`, and ms completely specify the state of
the electron. While n can be any positive integer, for each value of n there
are only a limited number of choices for the other quantum numbers, so only
a finite number of states. For example. for n = 3, we can have ` = 0, 1, or
2. If ` = 0, m` must be zero, and there are only the two states ms = 1

2
,−1

2
.

Thus there are two states in the 3s subshell. For ` = 1 we can have m` = −1,
0, or 1, and each of these can be combined with either of the two values for
ms, so there are 6 states in the 3p subshell. Finally for ` = 2, we can have
m` = −2,−1, 0, 1, or 2, and each of these five choices can be combined with
either of the two choices of spin, to give 10 states in the 3d subshell. In all,
the n = 3 shell thus has 18 states. As we shall see, this counting explains the
periodic table of the elements, so this simple counting has profound effects.

Full state of electron specified by n, `,m`, ms

Shell sub- n ` m` ms number
shell of states

K 1s 1 0 0 1
2
,−1

2
2

L 2s 2 0 0 1
2
,−1

2
2

L 2p 2 1 −1, 0, 1 1
2
,−1

2
6

M 3s 3 0 0 1
2
,−1

2
2

M 3p 3 1 −1, 0, 1 1
2
,−1

2
6

M 3d 3 2 −2,−1, 0, 1, 2 1
2
,−1

2
10

3 Hydrogen Wave Functions

The general problem of working out the wave function ψ(r, θ, φ,ms) is a
problem in partial differential equations, and while it can be done elegantly,
it is beyond the scope of this course. Still, it would be a good idea to have
some picture of what these wave functions look like, because the behavior of
atoms can be described in terms of these functions which tell us where the
electron is likely to be found.
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The ` = 0, or s states, are the easiest, because their wavefunctions have
no dependence on the angles, so the wave function is spherically symmetric.
Easiest of all is the n = 1 state,

ψ1s(r) =
1√
πa3

0

e−r/a0 ,

where a0 is still the Bohr radius. The depen-
dence on r is a simple decreasing exponential. The
square of the wave function gives the probability
of finding the electron, per unit volume. So the
probability that the electron is found within an
infinitesimal volume dV at distance r from the
nucleus is

|ψ1s|2dV =
1

πa3
0

e−2r/a0dV,

x

y

z

and the most likely spot for the electron is on top of the nucleus. But that
is misleading; it is better to ask what the probability is for the electron to
be within dr of being a distance r from the nucleus. That is, what is the
probability P (r)dr that the electron is in a spherical shell of radius r and
thickness dr centered on the nucleus? The volume of the shell is its area
times its thickness, dV = 4πr2dr, so

P (r)dr = |ψ|2 × 4πr2dr

and
P (r) = 4πr2|ψ|2.

For our 1s state this gives

P (r) =
4r2

a3
0

e−2r/a0 . r

P1s(r)

a0

From the plot, or by differentiating to find the maximum, we find that the
most probably value of r is a0, not zero.

Notice that the Bohr picture, with the electron is at a definite radius, is
not correct.
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The higher n states have the same sort of expo-
nential dependence on r, but with a larger range,
ψ(r) ≈ e−r/na0 , and also have extra polynomials
in r multiplying them. This produces zeros in the
wave function at certain values of r. For example,
the 2s state has a factor (2 − r/a0) which pro-
duces a zero probability of being exactly at twice
the Bohr radius, and a good probability that the
electron is at about 5a0. Higher n values have
more zeros and are dominantly at larger values of
r, though all have some chance of being close to
the nucleus.

n = 1

n = 3

n = 2

n = 4

r

40302010

0.5

0.4

0.3

0.2

0.1

0

P (r) for s waves

The states which have ` > 0 are not spherically symmetric. For example,
a p state with m` = 0 has a wave function which is zR(r), which vanishes

in the x−y plane. For the n = 2 shell R is a decaying
exponential and the wave function looks like S&B Fig.
42.9(c). There are two other p states, which can be ex-
pressed as xR(r) and yR(r), or alternatively as m` = ±1,
which are combinations of the xR(r) and yR(r) states.

S& B 42.9
p-wave
functionals
7” × 2 3/4”

m` = +1 is much like a plane wave polarized at 45◦, a combination of plane
waves polarized in the y and z directions.

For ` > 0, where the wavefunctions are not spherically
symmetric, it is difficult to present the picture of the
probability density in three dimensions. If we look at a
slice of the electron cloud with x = 0 we can plot the
probability of the electron being at a point near that
plane. That is what this program does. Lets try it for
n = 4, ` = 2, m` = 1.

Do wave-
function
demo

For a given ` the lowest possible princi-
ple quantum number is n = `+1. For that
shell the radial function R(r) has no zeroes
except at r = 0. The higher n states have
extra factors which push most of the wave
function further from the nucleus.

n = 2

n = 3

n = 4

n = 5

r

40302010

0.15

0.1

0.05

0

p wave P (r)

n = 3

n = 4

n = 5

r

40302010

0.1

0.08

0.06

0.04

0.02

0

d wave P (r)

We will focus more attention on ` and m next time, and discuss how this
leads to the atoms we know from the periodic table.
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4 Summary

• The states of a hydrogen atom are solutions of Schrödinger’s equation
with a potential U(r) = −ke

e2

r
.

• The solutions are indexed by

– principle quantum number n = 1, 2, 3, ...

– orbital quantum number ` = 0, 1, ...n− 1

– orbital magnetic quantum numberm` = −`,−`+1, ..., `−1, `

but the full state of the electron also needs to have the spin magnetic
quantum number specified as ±1

2
.

• All states with a given n are called a shell, and all of those having a
given ` are called a subshell, and are given letters s, p, d, f, ... .

• The energy of the state depends only on the principle quantum number

En = −13.606 eV

n2
.

• The hydrogen wave functions have a decaying exponential e−r/na0 , pos-
sibly multiplied by polynomials in r (for n > `+1) and by polynomials
in (x, y, z) of order `. The probability to lie within a range of values of
r is proportional to r2|ψ|2 and peaks at some nonzero value, a0 for the
ground state 1s.


