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Physics 228, Lecture 13

Monday, March 7, 2005

Probability, Schrödinger. Ch 39:5, Ch 40:1;
Copyright c©2002 by Joel A. Shapiro

1 Schrödinger’s Equation

According to de Broglie, a freely moving particle with momentum p has an
associated wavelength λ = h/p. This is the wavelength of oscillation of a
wavefunction,

Ψ1(x, t) = A sin
(

2πx

λ

)
cosωt = A sin

(
p

h̄
x
)

cosωt,

where h̄ = h/2π. The angular frequency ω is just proportional to the the
total energy E = hf = h̄ω. Of course the phases could be different, and we
could have used sinωt instead of cosωt

For photons, we know that their wave properties come from the solution
of Maxwell’s equations in empty space, and in particular from the wave
equation for the electric and magnetic fields

∂2 ~B

∂x2
=

1

c2
∂2 ~B

∂t2
.

For a plane wave with wavelength λ, corresponding to a photon of momentum
p = h/λ and energy E = hf = h̄ω, the wave is of the form

~B = ~B0 sin
(
px

h̄

)
cos

(
Et

h̄

)
,

so the partial derivatives are

∂2 ~B

∂x2
= −

(
p

h̄

)2
~B,

∂2 ~B

∂t2
= −

(
E

h̄

)2

~B.

and the wave equation is telling us p2 = E2/c2. which is just the equation
that relates a photon’s momentum to its energy.
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For a free non-relativistic particle, the corresponding equation is E =
1
2
mv2 = p2/2m. So let’s see if we can interpret

EΨ =
p2

2m
Ψ

in terms of a wave-like equation. The p2 is just like for the photon, so we
note that if

Ψ1(x, t) = A sin
(
p

h̄
x
)

cos
(
E

h̄
t
)
,

∂2

∂x2
Ψ1 = −p

2

h̄2Ψ1, and so
p2

2m
Ψ1 = − h̄2

2m

∂2

∂x2
Ψ1.

For the nonrelativistic particle we only need one power of E, rather than E2

as we had for the photon. If we apply just one time derivative,

∂

∂t
Ψ1 = −AE

h̄
sin

(
p

h̄
x
)

sin
(
E

h̄
t
)
,

which is almost enough to write

− h̄2

2m

∂2

∂x2
Ψ1 =

p2

2m
Ψ1 =

p2

2m
A sin

(
p

h̄
x
)

cos
(
E

h̄
t
)
,

∼ h̄
∂

∂t
Ψ1 = −E A sin

(
p

h̄
x
)

sin
(
E

h̄
t
)
, Not quite!,

This doesn’t quite work, because we have − sin(Et/h̄) instead of cos(Et/h̄).
What if we had started with a sine? If

Ψ2(x, t) = A sin
(
p

h̄
x
)

sin
(
E

h̄
t
)
,

− h̄2

2m

∂2

∂x2
Ψ2 =

p2

2m
Ψ2

h̄
∂

∂t
Ψ2 = EA sin

(
p

h̄
x
)

cos
(
E

h̄
t
)

= EΨ1.

So that doesn’t quite work either. If we rewrite our previous attempt

h̄
∂

∂t
Ψ1 = −EA sin

(
p

h̄
x
)

sin
(
E

h̄
t
)

= −EΨ2,
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we see that neither Ψ1 nor Ψ2 provides a neat partial differential equation,
but the combination

Ψ = Ψ1 − iΨ2 has h̄
∂

∂t
Ψ = h̄

∂

∂t
Ψ1 − ih̄

∂

∂t
Ψ2 = −E (Ψ2 + iΨ1) = −iEΨ.

Thus the wave function Ψ which describes a free particle of momentum p
and energy E satisfies

− h̄2

2m

∂2

∂x2
Ψ =

p2

2m
Ψ = EΨ = ih̄

∂

∂t
Ψ,

and more generally any free particle wave function satisfies the differential
equation

− h̄2

2m

∂2

∂x2
Ψ = ih̄

∂

∂t
Ψ.

Notice that to write down a wave equation we needed to make a complex
wave function with the combination

Ψ = A sin
(
p

h̄
x
)

(cosωt− i sinωt) .

In fact the wave equation itself has a complex constant i in it, so no real
function can satisfy it (unless the energy is zero).

The combination1

cos θ − i sin θ = e−iθ,

and if you get comfortable using complex numbers in this way, many problems
in differential equations become much easier to deal with.

1Proofs: 1) As

ex =
∞∑

n=0

1
n!
xn, e−iθ =

∞∑
n=0

1
n!

(−i)nθn.

But as (−i)2 = −1, we have (−i)n = (−1)n/2 for even n, so

e−iθ =
∑

even n

1
n!

(−θ2)n/2 − i
∑

odd n

1
n!

(−1)(n−1)/2θn = cos θ − i sin θ.

2) For θ = 0 the equation is true because both sides are 1. And each side of the equation
satisfies the differential equation

dy(θ)
dθ

= −iy(θ).

That is enough to show the two sides must be equal.
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1.1 Adding potential energy

A free particle is nice to understand, but we also need to describe parti-
cles that have forces on them, like an electron in an atom. If we have a
particle with a definite total energy E in a potential, the momentum will
not be the same everywhere, so the wavelength will be varying from point to
point. Strictly speaking, the concept of wavelength only applies to a periodic
function, for which the wavelength is the same everywhere.

We have just seen how to replace the wavelength by derivatives, which
can vary from point to point. Energy conservation tells us that the total
energy E is the sum of the kinetic energy p2/2m and the potential energy
U(x). Thus

p2 = 2m[E − U(x)]

and
∂2ψ

∂x2
= −2m

h̄2 [E − U(x)]ψ.

This is known as the time-independent Schrödinger equation. It ap-
plies for a wave function known to have a definite energy E. As before, we
can reexpress EΨ = ih̄∂Ψ/∂t, to get the more general time-dependent
Schrödinger equation 2:

− h̄2

2m

∂2Ψ(x, t)

∂x2
+ U(x)Ψ(x, t) = ih̄

∂Ψ(x, t)

∂t
,

which we have written for a one dimensional problem3. We will not need
this more general form, and shall only ask about states of definite energy
which we can treat without worrying about the time dependence of the wave

2The text uses Ψ(x, t) for the time-dependent wave function, to distinguish it from the
time-independent function ψ(x). But this is not standard notation.

3For a problem in three dimensional space, Ψ is a function of the full position ~r and t,
Ψ(~r, t), and we need the full momentum squared, ~p 2 = p2

x + p2
y + p2

z, which turns into a
sum of second partial derivatives. Thus the Schrödinger equation becomes

− h̄2

2m
∇2Ψ(~r, t) + U(~r)Ψ(~r, t) = ih̄

∂Ψ(~r, t)
∂t

,

where

∇2Ψ(~r, t) :=
∂2Ψ(~r, t)
∂x2

+
∂2Ψ(~r, t)
∂y2

+
∂2Ψ(~r, t)
∂z2

.

∇2 is called the “Laplacian” operator. It is the divergence of the gradient, ~∇ · ~∇.
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function, using the time-independent Schrödinger equation. For problems in
one dimension, the only variable that the wave function depends on is then
x, and the partial derivatives are ordinary:

d2ψ(x)

dx2
= −2m

h̄2 [E − U(x)]ψ(x).

For a general function U(x), the solution of this equation is a problem of
ordinary differential equations and is beyond the scope of this course. We
will discuss some simple cases, however. But first, let us discuss the meaning
of the wave function.

2 Probability Density

Last time we discussed that the wave finction ψ is the probability amplitude,
whose square gives the probability density, the probability that the particle is
found in a small region divided by the volume of that region. Let’s consider

just motion in one dimension, so we may ask what the
probability is that the particle will be in the range
[x, x+ dx]. For infinitesimal dx, the answer is

P (x)dx = |ψ(x)|2,

Show Fig. 41.8,
∆x added
3” × 3”

provided ψ(x) is the normalized wave function. What does that mean? The
Schrödinger equation does not determine a scale for ψ — if ψ(x) satisfies it,
so does 2ψ(x), or any other multiple. But we do know that the probability
that the particle is somewhere must be one, so∫ ∞

−∞
P (x)dx = 1 =

∫ ∞
−∞

|ψ(x)|2dx.

This last condition is called the normalization condition, and ψ is said
to be normalized if it satisfies that condition. Then the more interesting
question is what the probability is that the particle be between a and b > a.
That is

P ([a, b]) =
∫ b

a
|ψ(x)|2dx.

If we know a quantum mechanical system is in the state ψ and want to
know where the particle is, we do not have a definite answer. We can do some
measurement that determines where it is, but we will get different answers,
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with various probabilities, if we repeat the experiment many times. Knowing
the wave function does not enable you to predict the answer you will get from
one measurement, but it can tell you the average you will get if your repeat
the experiment many times. This is called the expectation value, which
physicists denote with angle brackets. To get the expectation value, one must
multiply the result x by the probability of getting that result, P (x), and sum
over all possible results. With a continuum of possible results, this is

〈x〉 =
∫ ∞
−∞

x|ψ(x)|2dx.

Note the extra x in the integrand, compared to the normalization condition.

3 Wave packets

We have seen that the Schödinger equation determines the wave function for
a particle, and in particular for a free particle with no forces or potential, we
have

− h̄2

2m

∂2Ψ(x, t)

∂x2
= ih̄

∂Ψ(x, t)

∂t
.

This is a linear differential equation which has the particular solutions

Ψk(x, t) = ei(kx−ωt), with ω = h̄
k2

2m
,

because

p =
h

λ
= h̄k, E = hf = h̄ω =

p2

2m
=
h̄2k2

2m
.

As the Schrödinger equation is linear, an arbitrary linear combination of
these particular solutions is also a solution.

Now if we look at the so-
lution Ψk(x, t), it doesn’t look
much like a particle moving in
the positive x direction. The

k

A
k

x

real part is a sine wave throughout space, so the particle is not localized at
all.

This should not be a surprize, because this particle has its momentum
exactly determined to be the one value p = h̄k. If we want to localize the
particle we will need to make the momentum a bit uncertain.
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Let’s add in to the k = 4 am-
plitude some k = 3.5 and some
k = 4.5 wave, with amplitudes
as shown:

k

A
k

x

These give “beats” which local-
ize the particle somewhat, but
not to one localized location. If
we want to do better, lets throw
in some k = 3 and k = 5 stuff:

k

A
k

x

We see that each location is a
bit better localized, because ∆p
has increased, but we still have
repeats.

To do something about that,
we need to use more intermedi-
ate values of k, so lets throw in
contributions at intervals of 0.25
in k-space, as shown.

k

A
k

x

That seemed to work, but in fact there will still be repeats, beyond the
values of x we have plotted, unless we use a continuum of k values, so we
need to use an integral,

ψ(x) =
∫ ∞
−∞

A(k)eikxdk,

where A(k) is some smooth function of k, such as the envelope of the discrete
values shown, which for our example is A(k) = e−(k−4)2 . This will then have
no recurrences, and just the uncertainty in x visible on the graph.
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4 Particle in a box
We will consider next one very simplified problem us-
ing Schrödinger’s equation. Suppose we have a par-
ticle that is free (i.e. has no forces on it) except that
it is confined to a box. In one dimension that means
there is a wall, say at x = 0, which prevents the parti-
cle from being to its left, and another wall, at x = L,
preventing the particle from being to its right. This
is called the infinite square well. These walls exert
an infinite force from an infinite4 confining potential
(no matter how hard the particle hits, it cannot pene-
trate.) Thus there is zero probability that the particle
will be outside the box, and

4

U(x)

m v
L0 0

ψ(x) =




0 for x ≤ 0
A sin(kx) for 0 ≤ x ≤ L

0 for x ≥ L

The function in the region x ∈ [0, L] is a sine because it has to be zero to
match the wavefunction values outside the box. We can assume U = 0 inside
the box, so from the Schrödinger equation

d2ψ(x)

dx2
= −2mE

h̄2 ψ(x)

= −k2ψ(x)

so we see that

k =

√
2mE

h̄
,

but also, because ψ must be continuous and thus zero at
x = L, we must have sin kL = 0, or kL = nπ for some
integer n. This means that not all energies are possible —
for each positive integer n we have one state with energy
En given by

Show fig 41.12
E levels in
box (3” × 3 1/4”)

√
2mEn

h̄
L = nπ, or En =

n2π2h̄2

2mL2
=

h2

8mL2
n2.

4There would be an infinite force even if the potential outside the box were finite, as
long as there is a discontinuity in U(x). But that “finite square well” would not necessarily
be enough to confine a particle, because if it has enough energy, E > U(x > L) the particle
could overcome this force. We will discuss the finite square well next time.
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Each state has a wave function

ψn(x) =

√
2

L
sin

(
nπx

L

)
.

Classically, the particle would be moving back and forth
with constant speed, and would spend an equal amount
of time in each region of the box. Quantum mechanically,
the probability of being at any particular spot is given by
the square of the wave function. Here we show the wave
function and the probability density for the lowest three
states.

show fig 41.11
ψ, |ψ2| in box
7 1/4” × 3 3/4”

There is some strange stuff going on here. The particle is never found
right at the wall, and for the n = 2 state it is never in the middle, even
though it is equally likely to be on either side of the middle.

Notice that the momentum p =
h

λ
=

h

2L/n
=

nh

2L
also only takes on

discrete values. It would appear to have a definite value for the n’th state,
which would contradict the Heisenberg uncertainty principle coupled with
the fact that we know its position,

0 ≤ x ≤ L so ∆x = L.

But in fact the above value for the momentum is actually its magnitude only,
the momentum is equally likely to be positive or negative (in the x-direction),
so ∆p = 2nh/2L, and

∆x∆p = L
nh

L
= nh > h̄/2.

Note also that the lowest state is n = 1. n = 0 is not possible for several
reasons. One is that ψ = A sin(0 · x) = 0 cannot be normalized. Another is
that then p = ±0 would violate the Heisenberg principle. So a particle in a
box cannot be completely at rest — it has a minimum possible energy called
the zero-point energy.

Schrödinger’s equation is the basis of non-relativistic quantum mechanics,
and many important physical problems, like the harmonic oscillator or the
hydrogen atom, can be worked out in detail. There are many interesting
effects, such as the fact that there is some probability of finding a particle
in a region in which its potential energy is higher than its total energy,
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which cannot happen classically. This also permits particles to “tunnel”
through small regions which, classically, they could not get through, and this
is responsible for such things as the long half-lives of radioactive nuclei. It
is also the principle behind an electronic device called a tunnel diode. But
you will have to take a more advanced course if you want to see those things
worked out.

5 Summary

• The time-independent Schrödinger Equation (in one dimension)

d2ψ(x)

dx2
= −2m

h̄2 [E − U(x)]ψ(x)

gives the wave function for a stationary state, that is a state of definite
energy.

• The probability density is given by |ψ|2, and the expection value for
the position is

〈x〉 =
∫ ∞
−∞

x|ψ(x)|2dx.

• a particle trapped in a box with infinitely strong walls has states la-
belled by a positive integer n with wave functions and energies

ψn(x) =

√
2

L
sin

(
nπx

L

)
, En =

h2

8mL2
n2.


