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Physics 228, Lecture 5

Thursday, Feb. 3, 2005

Diffraction. Ch 36:1-4, 7;
Copyright c©2002, 2003 by Joel A. Shapiro

1 Diffraction in general

Huygens’ principle has told us that waves do not strictly travel in straight
lines as particles without forces on them do, and as we assumed when we
were using geometrical (that is ray) optics. Parts of the waves will spread
out from straight paths, in a process called diffraction. In this lecture we will
investigate diffraction

First of all, a comment about the edges of shadows. If we have a point
source of light and an opaque object with a straight edge, geometrical optics
would say the shadow would have a straight line dividing a black region from

a lit region. If we actually look closely at the di-
viding line, however, we find that there are fringes
which fade into an even brightness. This is a
diffraction pattern, and can be understood only

S&BV5 Fig. 38.2
Edge Diffraction

in terms of the propagation of waves. Once your eyes are sufficiently dark
adjusted, and now that you know what to look for, look at the shadow of a
razor blade on the right side of the screen.

A really spectacular consequence is the shadow of a disk. Look at the
shadow of a disk on the left of the screen. You see the geometrical circular
dark area, but you also see fringes near the border. More surprizingly, if you
look very closely you should be able to see a bright spot at the center! This
is known as Poisson’s spot, and there is a lovely story about that1.

1In 1818 the French Academy sponsored a competition, to which Fresnel submitted an
erudite paper on calculational methods for the wave theory of light. Poisson, who was one
of the judges and who hated the wave theory, was dead against Fresnel getting the prize,
and to shoot down this possibility, he used Fresnel’s theory to show that a circular object
should cast a shadow with a bright spot in the middle. This, he said, is absurd, so we
can’t possibily award the prize to Fresnel. But another judge, Arago, decided to test the
prediction of the spot, and found that indeed it was there! So Fresnel got the prize, but
curiously the spot got named for Poisson, “like a curse”.
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We are going to analyze a few cases involving slits, and then we will
describe the results for circular apertures, which are important but more dif-

ficult to analyze. Previously in analyzing slits we
treated them as infinitesimally wide, but now we
will consider their width. In all cases, it makes

Demo adj slit, start
wide, get narror

the analysis easier if we can treat the interfering rays as coming in parallel

through the slits or aperatures. There are two
ways this can be appropriate. Either the screen
can be very far away compared to the extent of
the aperature, or we can use a converging lens
with the screen at its focal point. Then the rays

S&BV5 Fig 38.4.
Single slit
diffraction
3”× 4 3/8”, plot, no photo

of light which converge at a point on the screen are those which came through
the slit in parallel. When the situation satisfies this requirement, the result
is called Fraunhofer diffraction.

We have a slit a fraction of a millimeter wide in the back of the room,
through which a laser shines light at the screen. Clearly the rays hitting any
point of the screen are very nearly parallel, even though they do intersect
at that point of the screen. So we have Fraunhofer diffraction here. Notice
the pattern, with a bright fringe in the middle, but also more fringes, much
fainter, on either side.

2 Diffraction from a single slit

We will first analyze the diffraction from a single
slit of width a. To find the intensity at a point P
at an angle θ, we consider the extra path length
that each ray must travel relative to the ray at the
top which travels the shortest distance.

S&BV5 Fig 38.5.
single slit split in
two.
(3 1/2” × 4”)

Before we consider the situation in general, let’s consider the particular
angle θ for which the bottom ray is exactly one wavelength further from the
screen than the top ray. As that extra distance is a sin θ, we are talking about
sin θ = λ/a. The ray which comes from the middle of the slit will then have
travelled exactly one half wavelength more than the ray from the top, so it
will be exactly 180◦ out of phase, and will interfere destructively with that
ray. That is only one pair of rays which cancel, but in fact the same is true
for every ray which passes through the upper half of the slit — it is exactly
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180◦ out of phase with one ray which passed a/2 below it, so this pair cancels
as well. And when we have counted all the rays in the upper half and their
partners a/2 below, we have counted them all, so must have a dark spot at
this angle. At this angle the top half of the slit cancels the bottom half.

In fact, if we divide the slit into any even number of equal slices and
arrange the angle so that successive slices give phase shifts differing by 180◦,
they will cancel. So the condition for a dark fringe is

Dark: sin θ = m
λ

a
for m an integer other than 0.

How can we analyze quantitatively the intensity as a function of angle?
Let β be the net phase shift between the lowest and highest rays, so

β = 2π
a sin θ

λ
.

We can imagine the full slit as composed of a large number N of evenly
spaced slits, a situation we met before. Each little slit will contribute a field
E0 proportional to its width, so inversely proportional to N ,

E0 =
A

N
,

and the phase difference between successive little slits is φ = β/N . The real
problem, that is a single slit of width a, is the limit that we have an infinite
number of infinitesimally thin slits, so we want to take the limit as N →∞.

We recall that for small angles φ the phasors lined
up for addition along a circle, so they add up to
an arc. The length of the arc is just NE0 = A,
a constant independent of the angle θ (or β) and
of how many imaginary slits we used to subdivide
our problem. The last phasor is at an angle β,
so the arc subtends an angle β as well. Thus the
length of the arc is also given by the radius times
β, Rβ = A. The bisector of the isosceles triange
shows us that R sin(β/2) = ER/2, so

E  /2
E

β

β/2

R
R

β/2

R

R

ER = 2R sin(β/2) = A
sin(β/2)

β/2
,
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and the intensity, which is proportional to E2
R, is given by

I = Imax

(
sin(β/2)

β/2

)2

= Imax

(
sin(πa sin θ/λ)

πa sin θ/λ

)2

.

We can check that we get zero at sin θ = mλ/a, as our qualitative argument
predicted.

Note that the calculation we did here is very similar to what we did for
N slits last time, except that we took a limit N → ∞ with a = Nd fixed.

The slide show from last time just needs to be changed to
display the total phase difference from one side of the slit
to the other, rather than between neighboring slits (which
loose their distinction as N →∞) and to concentrate on
a smaller total phase difference. Here it is.

Show slide
show
stop at 1500◦

Recall that our qualitative argument said we have minima for all integer
m except zero. What does our formula show? If we evaluate

sin(β/2)

β/2

at β = 0, we get 0 over 0, undetermined. We need to approach β = 0 as a
limit. Using L’Hospital’s rule

lim
x→0

sin x

x
= lim

x→0

(
d sin x

dx

/
dx

dx

)
= lim

x→0

cos x

1
= 1,

so in fact the intensity at θ = 0 is not zero but the maximum.

3 Two slit diffraction

When we considered multiple slit diffraction last time, we assumed the inten-
sity from each slit would not be a function of angle. The interference patterns
usually have a fairly small angular range, and if the slit is thin enough the
light passing through it emerges with a broad angular distribution. But we
now see that if each slit has a width a, each slit will contribute with an
amplitude proportional to

sin(πa sin θ/λ)

πa sin θ/λ
,
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so we should correct the two slit formula for narrow slits

I = I
(a→0)
max cos2

(
πd sin θ

λ

)
(two infinitesimal slits)

by replacing I
(a→0)
max with

Imax

(
sin(πa sin θ/λ)

πa sin θ/λ

)2

,

which gives all together

Imax cos2

(
πd sin θ

λ

)(
sin(πa sin θ/λ)

πa sin θ/λ

)2

.

If the spacing of the slits, d, is many times the width of each slit, a,

the cosine term will oscillate much more rapidly
than the sine term. The intensity pattern will
then be the rapid oscillation of the double slit pat-
tern modulated by the single slit pattern. Here it
is for d = 6a:

S&BV5 Fig 38.11
multiple finite width
slits
7” × 6”

4 Resolution

As we saw last time, when a plane wave passes through a narrow slit, some
of the light is diffracted so that it is no longer travelling in exactly the same
direction that it had been. If we have a lens behind the slit with a screen at
its focal length, the deviated light will be focussed into a position other than
where it would have gone had there been no slit. If there were two sources of
light, each of them has a central maximum in the position where the source
would have been imaged had there been no slit, but each of them also has a
diffraction pattern from the slit. [Note that the two independent sources do
not interfere with each other, only each ones light interferes with itself.]

Now if the two sources are not very far apart in angle, the images formed,
which are no longer points but diffraction patterns, may start to overlap. If
they overlap enough, we will not be able to tell that this is the light from two
sources rather than one. This means that imaging through a slit imposes a
limit on the resolution.

Although it is somewhat arbitrary when to declare images no longer re-
solved, the commonly accepted standard is called Rayleigh’s criterion.
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Rayleigh announced that we should consider the images just barely resolv-
able if the central maximum of one image falls on the first minimum of the
other. As we have seen, for a single slit, this means that the angle between
the sources must be no less than

sin θ =
λ

a
.

You are probably more familiar with optical systems which involve cir-
cular aperatures rather than slits. Working out the diffraction of a circular
aperature is considerably more mathematically sophisticated than for a slit,
so we will only quote the result, which is that the first minimum occurs at
an angle

θ = 1.22
λ

D
,

where D is the diameter of the circular aperature. So every optical instrument
automatically has a limit on its resolving power. If you go outside on a dark
night, your pupils will dilate to, say, 8 mm in diameter. If you look up at
the stars, the light appears white, meaning that many different wavelengths
are involved, but we may use 500 nm (green) as a good central value. Then
according to Rayleigh’s criterion, no matter how well your eyes focus or how
closely together your retinal receptors are, you will not be able to resolve two
stars which are at an angle less than2

θmin = 1.22
λ

D
= 1.22× 5.00× 10−7

8× 10−3
= 7.6× 10−5 radians

= 0.004◦ ≈ 1

4
minutes of arc.

Rutgers is currently involved in building a telescope in South Africa with
an aperature of 11 m. If its resolutions were limited by diffraction, what
would be the minimum angle it could resolve? How big an object on the
moon could be resolved as not pointlike?

Now θmin = 1.22
λ

D
= 1.22× 5.00× 10−7

11
= 5.5× 10−8 radians

= 11 milliseconds of arc.
2Actually you can do better, because we should have used the wavelength in your

eyeball, not in vacuum. The index of refraction in your vitreous humor is roughly like
water’s, 1.33, so the wavelength there is about 3/4 of the wavelength in air, and you so
you can perhaps do about 30% better than we calculated.
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The moon is R = 3.84 × 108 m from Earth, so the minimum resolvable
distance would be Rθmin = 3.84× 108 × 5.5× 10−8 m = 21 m.

Unfortunately atmospheric disturbances cause more resolution problems
than diffraction for such big telescopes, and the resolution on a really good
night will never be better than about 0.8 seconds of arc. The size of large
ground based telescopes is primarily to be able to gather more light from
weak sources, rather than to improve the resolution from diffraction.

5 Summary

• Waves do not actually move in straight lines, but have some spreading
out when they pass boundaries, called diffraction.

• Fraunhofer diffraction occurs when the interfering light can be consid-
ered parallel as it passes through the aperature.

• Each portion of the aperature can be considered a source interfering
with all the other portions.

• For a single slit of width a, the intensity at angle θ is

I = Imax

(
sin(πa sin θ/λ)

πa sin θ/λ

)2

.

• For multiple slits each with finite width a, the intensity is the prod-
uct of the formula for a single slit of width a with that for multiple
infinitesimal slits.

• Rayleigh’s criterion for being able to resolve two images is that the
central maximum of the diffraction of one lie at the minimum of the
central maximum of the other. If they are closer than that, it is hard
to distinguish the images.

• For a slit of width a, this gives θmin =
λ

a
. For a circular aperature

θmin = 1.22
λ

D
, where D is the diameter.


