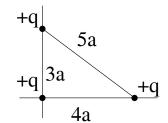
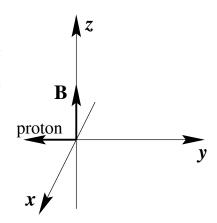
Physics 227 - Final Exam 19 December 2006 Profs. Coleman and Rabe

\implies	
Your	
name	
$\operatorname{sticker}$	
with	
exam	
code	
\implies	

Your signature


Turn off and put away cell phones now!

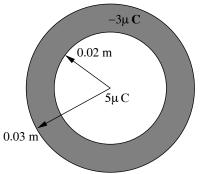
- 1. The exam will last from 4:00 pm to 7:00 PM. Use a #2 pencil to make entries on the answer sheet. Enter the following ID information now, before the exam starts.
- 2. In the section labelled NAME (Last, First, M.I.) enter your last name, then fill in the empty circle for a blank, then enter your first name, another blank, and finally your middle initial.
- 3. Under STUDENT # enter your 9-digit student ID.
- 4. Enter 227 under COURSE, and your section number (see label above) under SEC.
- 5. Under CODE enter the exam code given above.
- 6. During the exam, you may use pencils, a calculator, and two **handwritten** 8.5 x 11 inch sheets with formulas and notes, without attachments.
- 7. There are 30 questions on the exam. For each multiple-choice question, mark only one answer on the answer sheet. There is no deduction of points for an incorrect answer, so even if you cannot work out the answer to a question, you should make an educated guess. At the end of the exam, hand in the answer sheet and the cover page. Retain this question paper for future reference and study.


- 8. When you are asked to open the exam, make sure that your copy contains all 30 questions. Raise your hand if this is not the case, and a proctor will help you. Also raise your hand during the exam if you have a question.
- 9. Please SIGN the cover sheet under your name sticker and have your student ID ready to show to the proctor during the exam.

Some possibly useful information: $c = \text{speed of light} = 3.00 \times 10^8 \text{ m/s}$ $q_e = -e =$ charge on an electron $= -1.602 \times 10^{-19}$ Coulombs $q_p = +e =$ charge on a proton $= +1.602 \times 10^{-19}$ Coulombs $m_e = \text{electron mass} = 9.11 \times 10^{-31} \text{ kg}$ $m_p = \text{proton mass} = 1.67 \times 10^{-27} \text{ kg}$ $k_e = 8.99 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$ $\epsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2 / (\mathrm{N} \cdot \mathrm{m}^2)$ $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{T} \cdot \mathrm{m/A}$ $q = 9.80 \,\mathrm{m/s^2}$ $1 \text{ mHz} = 10^{-3} \text{ Hz}$ $1 \text{ kHz} = 10^{+3} \text{ Hz}$ $1 \text{ MHz} = 10^{+6} \text{ Hz}$ $1 \text{ GHz} = 10^{+9} \text{ Hz}$ $1 \text{ mC} = 10^{-3} \text{ C}$ $1 \ \mu C = 10^{-6} C$ $1 \text{ nC} = 10^{-9} \text{ C}$ $1 \text{ pC} = 10^{-12} \text{ C}$

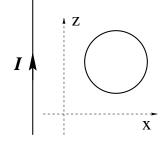
- 1. At x = 0 a long straight wire carries current I <u>into</u> the plane of the paper. At x = D, another long straight wire carries current 2I <u>into</u> the plane of the paper. What is the direction of the force on the wire at the origin?
 - a. None of the other answers
 - b. towards the positive y-direction \mathbf{y}
 - c. out of the plane of the paper $I \otimes 2I$ d. towards the negative x-direction $D \longrightarrow$
 - e. towards the positive x-direction
- 2. Three identical charges are initially at rest infinitely far apart. How much work is required to put the three charges together at rest as shown in the figure?
 - a) $0.78kq^2/a$
 - b) $0.20kq^2/a$
 - c) $0.45kq^2/a$
 - d) $1.6kq^2/a$
 - e) $2.4kq^2/a$

- 3. A proton is traveling in the negative y-direction. It enters a uniform magnetic field pointing in the positive z-direction. The force on the proton is in the
 - a) positive *x*-direction
 - b) positive *y*-direction
 - c) negative *z*-direction
 - d) none of the other answers
 - e) positive z-direction

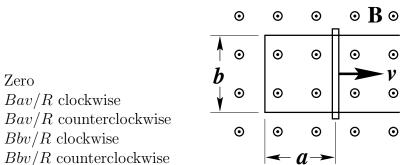


- 4. A long solenoid has 15 turns per centimeter. What current must we put through its windings if we wish to achieve a magnetic field of 5.0×10^{-2} T in its interior?
 - a) 77 A
 - b) 12 A
 - c) 333 A
 - d) 27 A
 - e) 135 A
- 5. A series RLC circuit has elements $R = 30\Omega$, $L = 10^{-3}$ H, and $C = 10^{-7}$ F. the maximum current during the cycle is $I_m = 2$ A when the circuit is connected to an EMF oscillating at the angular frequency $\omega = 1.25 \times 10^5$ /sec. The maximum EMF of the generator is
 - a) 76.5 V
 - b) 202.2 V
 - c) 154.2 V
 - d) 54.2 V
 - e) 108.2 V
- 6. A long straight wire of superconducting niobium, 2×10^{-3} m in **diameter**, carries a current of 1900 A. What is the strength of the magnetic field just outside the wire?
 - a) 2.4 T
 - b) 1.2 T
 - c) 0.19 T
 - d) 3.8 T
 - e) 0.38 T
- 7. Which of the following about magnetic materials is false?
 - a) A paramagnet develops an internal magnetization that points in the opposite direction to an applied field.
 - b) Superconductors are perfect diamagnets.
 - c) Ferromagnets develop a magnetization that persists, even in the absence of an applied field.
 - d) Paramagnets are attracted to regions of high field.
 - e) Diamagnets are repelled from regions of high field.

- 8. An electron moving in a plane perpendicular to a uniform magnetic field is observed to execute a circular orbit of radius 1 cm every 1 μ s. What is the magnitude of the magnetic field?
 - a) 5 T
 - b) 3.31 T
 - c) (2.67×10^{-2}) T
 - d) (1.8×10^{-9}) T
 - e) (3.6×10^{-5}) T
- 9. A point-charge of $+5\mu$ C is surrounded by a concentric hollow conducting sphere of inner radius 0.02m and outer radius 0.03m. The net charge on the conducting sphere is -3μ C. What is the net charge on the inner <u>surface</u> of the hollow sphere?



- b) $-3\mu C$
- c) $-5\mu C$
- d) $+2\mu C$
- e) $-2\mu C$


- 10. A parallel-plate capacitor consists of circular plates of radius 0.30 m separated by a distance of 2×10^{-3} m. The voltage applied to the capacitor is made to increase at a constant rate of 1.0×10^3 V/sec. Assume that the electric charge distributes itself uniformly over the plates. What is the magnitude of the magnetic field between the plates at a radius of 0.15 m?
 - a) $37.5 \times 10^4 \text{ T}$
 - b) $8.3 \times 10^{-16} \text{ T}$
 - c) 3.9×10^{-13} T
 - d) $8.3 \times 10^{-13} \text{ T}$
 - e) $4.2 \times 10^{-13} \text{ T}$

- 11. An AC generator supplies 100 V to the primary coil of a transformer. The primary has 50 turns and the secondary has 500 turns. The secondary voltage is:
 - a) 1000 V b) 500 V c) 250 V d) 100 V e) 10 V
- 12. A long straight wire carries a current *I* and is parallel to the *z*-axis, as shown. A loop of wire lying in the *xz*-plane is nearby. Which of the following is *false*?
 - a. If I is in the +z-direction and increasing in magnitude, a counterclockwise current is induced in the loop.
 - b. If I is in the +z-direction and decreasing in magnitude, a clockwise current is induced in the loop.

- c. If *I* is an AC current, an AC current is induced in the loop.
- d. If I is constant in the +z-direction and the loop is moved in the -z-direction, a clockwise current is induced in the loop.
- e. If I is constant in the +z-direction and the loop is moved in the +x-direction, a clockwise current is induced in the loop.

13. A metal rail with a sliding rod is in a uniform, constant magnetic field B directed out of the plane of the paper. The rod is sliding at speed v as shown. If the resistance of the assembly is R, what will be the induced current?

- 14. Two large parallel conducting plates are 10 cm apart and carry equal but opposite charges on their facing surfaces. An electron placed midway between the plates experiences a force of 3.2×10^{-17} N. The potential difference between the plates is
 - 2000 Va)

Zero

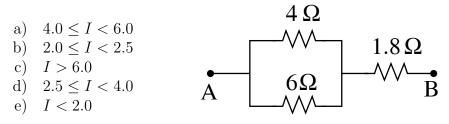
a)

b)

c)

d)

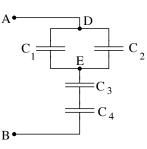
e)


- 200 Vb)
- 40 V c)
- 20 Vd)
- 10 V e)
- A parallel-plate capacitor is charged by a battery, and then dis-15.connected from it. If the plate separation is then doubled, what happens to the potential difference V between the plates and the energy U stored in the capacitor?
 - V gets doubled; U gets doubled a)
 - V gets doubled; U stays the same b)
 - V gets doubled; U gets halved c)
 - V gets halved; U gets halved d)
 - V gets halved; U stays the same e)

- There is a current of 5 mA in a solenoid of inductance 0.60 mH. 16. If the current is doubled, what will be the new inductance of the solenoid?
 - a) 0.30 mH
 - 0.42 mHb)
 - 0.60 mHc
 - 0.85 mHd)
 - 1.20 mHe)
- 17. A capacitor is connected to an AC source whose peak voltage is 12 V and whose angular frequency in 4000 rad/s. If the maximum current is 0.1 A, what is the capacitance?
 - $2.1 \times 10^{-6} {\rm F}$ a)
 - 0.03 F b)
 - $3 \times 10^{-4} \mathrm{F}$ c)
 - $2.1 \times 10^{-4} {
 m F}$ d)
 - $8.3 \times 10^{-3} \text{ F}$ e)
- 18. An infinitely long, straight string has a uniform linear charge density of λ expressed in C/m. A sphere of radius R has its center at a point on the string. What is the electric flux through the sphere?
 - a) $\lambda R/2\pi\epsilon_0$
 - $\lambda/2\pi R\epsilon_0$ b)
 - $\lambda R/2\epsilon_0$ c)
 - d) λ/ϵ_0
 - $2\lambda R/\epsilon_0$ e)

19. An RC circuit is driven by an AC voltage source $V = (170V) \sin 377t$. If the capacitor is 10 μ F, what must the resistor be, if the rms voltage across the resistor is to equal the rms voltage across the capacitor?

- 20. An inductor carrying a current of 1mA is designed to store $1\mu J$ of energy. What is its inductance?
 - d) 1 mH a) 2 H b) 1 H c) 2 mH e) $2 \mu H$
- The intensity of the electromagnetic radiation delivered by the 21. Sun to the Earth's surface is 1000 W/m^2 . What is the corresponding maximum value of the electric field?
 - a) $7.5 \times 10^5 \text{ V/m}$
 - $1.5 \times 10^{7} \text{ V/m}$ b)
 - 31.6 V/mc)
 - d) 614 V/m
 - 868 V/m e)
- 22. A potential difference of 9 Volts is applied between A and B in the figure shown. Then the current I in the 1.8 Ω resistor is, in amperes,

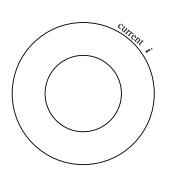


23. A light bulb consumes 50W of power and emits 5% of this as visible light. What is the intensity of the visible light a distance 2.0 m away?

a)
$$0.050 \text{ W/m}^2$$
 b) 1 W/m^2 c) 0.2 W/m^2
d) 0.15 W/m^2 e) 0.075 W/m^2

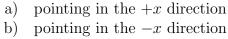
- 24. Each capacitor shown has a value of 5 μ F. What is the equivalent capacitance of this combination?
 - a) $0.5 \ \mu F$ $2.0 \ \mu F$
 - b)
 - $20 \ \mu F$ c)
 - $15 \ \mu F$ d)

- 25. We desire to make an LC circuit that oscillates at f = 100 Hzusing an inductance of 2.5 H. We also need a capacitance of:
 - $1 \mathrm{F}$ d) 100 μ F a) b) 1 mF c) $1 \mu F$ e) 1 pF
- 26. A thin copper wire of 0.20 mm diameter carries a current of 2 A. Copper has 8.4×10^{28} free electrons per m³. What is the drift speed of the electrons?
 - a) 6.06×10^3 m/sec
 - 2.1×10^6 m/sec b)
 - $6.11 \times 10^{-4} \text{ m/sec}$ c)
 - $4.7 \times 10^{-3} \text{ m/sec}$ d)
 - e) 1.48×10^5 m/sec

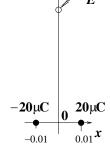

27. The electric field for a plane EM wave is given by

$$\vec{E} = (1000) \cos([3.3 \times 10^5]x - 10^{14}t) \hat{y}$$

- in S. I. units. For this wave
 - a) the magnetic field amplitude is 3×10^{11} T
 - b) the wavelength is 3×10^{-6} m
 - c) the period is 6.3×10^{-14} s
 - d) the frequency is 10^{14} Hz
 - e) the magnetic field points in the \hat{x} direction
- 28. Two concentric, circular loops of wire lie in the plane of the paper. The outer loop carries a current "i". Which of the following is true?
 - I: If i is counterclockwise and constant, the induced current in the inner loop will be nonzero and clockwise.
 - II: If i is counterclockwise and increasing, the induced current in the inner loop will be nonzero and counterclockwise.


III: If i is counterclockwise and decreasing, the induced current in the inner loop will be nonzero and counterclockwise.

- a) All three statements are true
- b) II and III are true; I is false
- c) Only III is true
- d) I and III are true; II is false
- e) Only I is true



- 29. A current of 2.0 amperes is running through an LR circuit containing a 1.0Ω resistor and a 10mH inductor. If the emf driving the current is suddenly switched off, how long does it take for the current to drop down to 0.5 A?
 - a) 13.9 ms b) 2.87 ms c) 1.40 ms d) 0.29 ms
 - e) 6.02 ms

30. A charge of $+20\mu$ C is placed on the *x*-axis at x = 0.01m, and a charge of -20μ C is placed on the *x*-axis at x = -0.01m. On the *y*-axis at y = 1m, the electric field is

- c) pointing in the +y direction
- d) pointing in the -y direction
- e) zero

