L4 Apphcations of Gauss' Law.

Last time, we learnt that Gauss' law

$$
\begin{aligned}
\text { Flux }= & \frac{1}{\epsilon_{0}} \text { Charge enclosed } \\
& \text { pemnitivily of } \\
& \text { space } \\
& \sim 8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-10} \mathrm{~m}^{-2}
\end{aligned}
$$

is a consequence of Coulombs lav. Indeed $E \propto 1 / r^{2}$ is the only ray that the flux ".ma change can be indepander of distance. Today we will or that in simations of high symmetry, Gauss' low permits us to evaluate r the electric fold with a minimum of calculahoin.
a) Field of a charge conducting sphore, charge q

- $E=0$ inside \therefore all chage must be at the ourface

- By oymmety charge is eserly distributiza on outare.
- Outride ophere $\int E \cdot d A=E 4 \pi r^{2}=\frac{q}{\epsilon_{0}} \Rightarrow E=\frac{q}{9 \pi \epsilon_{0} r^{2}}$

- E a ourface $E=\frac{q}{4 \pi \epsilon_{0} R^{2}}$

4) Field around a line charge

$$
\begin{aligned}
& \overbrace{(2 \pi \cdot l)}^{A} E=\epsilon_{0} \overbrace{\lambda l}^{9} \\
& \Rightarrow \quad E=\frac{\lambda}{2 \pi \varepsilon_{0} r}
\end{aligned}
$$

egg $\lambda=2 n c / m$

$$
r=1 \mathrm{~cm}
$$

$$
E=\widetilde{\left(\frac{1}{2 \pi \epsilon_{0}}\right)} \times \frac{2 \times 10^{-8}}{0.01}
$$

$$
=3600 \mathrm{~N} / \mathrm{C} .
$$

c)

$$
\Phi_{T 01}=E A \times 2=\frac{\overbrace{(\sigma A)}^{\epsilon_{0}}}{q} \quad E=\frac{\sigma}{2 \epsilon_{0}}
$$

$$
\text { e.g } \quad \sigma=\operatorname{lnc} / \mathrm{m}^{2} \quad \begin{aligned}
E & =\frac{1 \times 10^{-9}}{2 \times 8.854 \times 10^{-12}} \\
& =56.5 \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

-1) Two conduching capcutor plates

)
e) Uniprenty chaged sphen

$$
\rho=\frac{0}{\frac{4}{3} \pi R^{3}}
$$

i) $r<R$

$$
\begin{aligned}
\left(\frac{4}{3} \pi r^{3} \rho\right)= & q_{\text {raclamd }}
\end{aligned}=\left(4 \pi r^{2} E\right) \epsilon_{0} .
$$

ii) $r>R$

$$
4 \pi r^{2} E \in=\infty \quad E=\frac{Q}{4 \pi \in} \frac{1}{r^{2}}
$$

E $\frac{a}{4 \pi \epsilon} \frac{\Gamma}{R^{3}}$

Chazges on Conductoro

interal change mure be seened oo hal $Q_{\text {encoord }}=0$
chaged venductor e.f $Q_{T o t}=+10, C$ contans $-3 n C$ in a cou.ts

Foraday Cag2

No fuld an interior \Rightarrow chagos socen extend fleto.

Example A coaxial cable has as internal cable of radius R_{1} \& the internal radius of is outer coble is R_{2}. $\sigma_{1}=$ chaga dear of the intend cable

a) Calculcher held aside
b)

$$
\begin{aligned}
& E A=\frac{q_{1020 d r}}{\epsilon_{0}} \\
&=\frac{2 \pi R_{1} l \rho_{1}}{\epsilon_{0}} \\
& A=2 \pi r e \\
& E=\left(\frac{R_{1}}{r}\right) \frac{\sigma_{1}}{2 \pi \epsilon_{0}} \\
& R_{2}>r>R_{1}
\end{aligned}
$$

By Gama: las again

$$
\begin{aligned}
& E A=\frac{-q o u s_{i} d x}{\epsilon_{0}} \\
& E=\frac{R_{2}}{r} \frac{\sigma_{2}}{4 n \epsilon_{0}}
\end{aligned}
$$

$$
* * \Rightarrow \frac{\sigma_{1} R_{1}}{r\left(2 \pi r_{0}\right)} \quad \sigma_{1} R_{1}=\sigma_{1} R_{2} .
$$

