LV
Electric Fields.

This week we're going to learn about electric fields. We will see that the existence of Coulomb forces tells us that space
 is filled with electric fields. They produce Coulomb fores on paticises
 but they are also produced by changing magnetic fields. Electric fields keep matter together \& they cary energy - sometimes - vast amours of it. Indene the electric fold is a kind of "elasticity" of span B when we hang the electric field we create vibrations - vibrahios that are the origin of light, radiahant vireless.

$$
\begin{aligned}
& \vec{E}=\lim _{q_{0} \rightarrow 0}\left(\frac{\stackrel{\rightharpoonup}{F_{0}}}{q_{0}}\right) \\
& \vec{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{r}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\hat{r} & =\frac{\vec{r}}{r} \\
& =\frac{x \hat{\imath}+y \hat{\jmath}}{\sqrt{x^{2}+y^{2}}}
\end{array}\right)
$$

21.4 Electric Fields

Concept : think of the electric fore as a local property of space. Each charge changes space around it 15 produce an electric feed

If I put a charge here what fores will act on it?

- The fore will be proportional to the charge
- It will alucuys point in the sane direction

$E=$ Force pr unit chard.

\vec{E} a property of each point in space - indeed we winter
$\vec{E}(\vec{x})$ to show it depends on the position \vec{x}.

Similar idea used to explain gravity, when

$$
\frac{\vec{F}_{m}(x)}{m}=\vec{g}(x) \quad \text { gravitational field. }
$$

e.g What is the field produced by a point change q ?

$$
\begin{aligned}
\stackrel{\rightharpoonup}{F}_{0} & =\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q q_{0}}{r^{2}}\right) \hat{r} \\
\Rightarrow \quad \vec{E} & =\frac{\vec{F}_{0}}{q_{0}}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q}{r^{2}}\right) \hat{r} \quad \text { or } \frac{k q}{r^{2}} \hat{r}
\end{aligned}
$$

Numerical example - ouppore $r=3 m \quad q=-\ln C$

$$
\vec{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{9}{r^{2}} \hat{r}=9 \times 10^{9} \mathrm{Nm} / \mathrm{C}^{2} \times \frac{\left(-10^{-9} \mathrm{C}\right)}{(3 \mathrm{~m})^{2}} \hat{r}
$$

$=(-1 \hat{N}) \hat{r}$ (ponts tovarts the chage

Notice hou field lineo conveges on a -vr chage, emege from a poortive chage.

Field distributwons

$\left.\begin{array}{r}\text { Firlds emerge from }+v e \\ \text { converge to }-v e .\end{array}\right\}$
Firld lines can only disapprer or reapper al a cherge.

Fild lins an moits Fuled linno 1 sudm of aconchor

Election in a uniform field

$$
\begin{aligned}
\vec{F} & \begin{aligned}
\vec{F} & \vec{E} \\
& =-e \vec{E}
\end{aligned}
\end{aligned}
$$

Q. Suppose $E=10^{6} \mathrm{~N} / \mathrm{C}$ i) what is the acelerahoi of the electron?
ii) how much kinehi Energy does it gain in mooing froe her -ven to the position plater?
iii) how long dons it tales?
i) $\vec{a}=\frac{\vec{F}}{m} \quad$ (Newton)

$$
a_{y}=-\frac{e E_{y}}{m}=\frac{-1.6 \times 10^{-19} \mathrm{c} \times 10^{6} \mathrm{~N} / \mathrm{c}}{9.1 \times 10^{-31} \mathrm{~kg}}=\underline{-1.76 \times 10^{6} \mathrm{~m} / \mathrm{s}}
$$

Huge!
This is a memod to produce high energy electrons.
ii) Work done by fill $=F \times d=\Delta$ kinehi energy

$$
=\frac{1}{2} m v^{2}
$$

$$
\begin{aligned}
F \times d=(e E) d & =1.6 \times 10^{-19} \mathrm{C} \times 10^{6} \mathrm{~N} / \mathrm{C} \times 0.01 \mathrm{~m} \\
& =1.6 \times 10^{-15} \mathrm{~J}
\end{aligned}
$$

iii) $d=\frac{1}{2} a t^{2} \Rightarrow t=\sqrt{\frac{2 d}{a}}=\sqrt{\frac{2 \times 0.01}{1.76 \times 10^{17}}}$

$$
\begin{aligned}
& =3.4 \times 10^{-10} \mathrm{~s} \\
& =0.34 \mathrm{~ns}
\end{aligned}
$$

21.5 Many Charges

$$
\begin{aligned}
& \vec{F}_{\text {ToT }}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3} \\
& \quad=q_{0} \vec{E}_{1}+q_{0} \vec{E}_{2}+q_{0} E_{3} \\
& \vec{E}=\frac{\vec{F}_{\text {TOT }}}{q_{0}}=E_{1}+E_{2}+E_{3}
\end{aligned}
$$

Principle of Superposition

Total fred = our of fields from each charge.

We don't have to have just point charges - we can
Smear the charge distribution along a line, a plane or a
Volume.

plane
egg Field near dipole

What is the fired at $a, b \& c$?

$$
\mathbb{E}=\vec{E}_{1}+\vec{E}_{2} \quad\left\{\begin{array}{l}
\vec{E}_{1}=\frac{k q}{r_{1}^{2}} \hat{r}_{1} \\
\vec{E}_{2}=-\frac{k q}{\left(r_{2}\right)^{2}} \hat{r}_{2}
\end{array}\right.
$$

a) $\quad \vec{E}_{1 a}=\frac{9 \times 10^{9} \times 12 \times 10^{-9}}{\left(6 \times 10^{-2}\right)^{2}} \hat{\imath}=3 \times 10^{4} \mathrm{~N} / \mathrm{c}$

$$
\begin{aligned}
& \vec{E}_{2 a}=\frac{9 \times 10^{9} \times\left(-12 \times 10^{-9}\right)}{\left(4 \times 10^{-2}\right)^{2}}(-\hat{\imath})=\left(2.75 \times 10^{4} \mathrm{~N} / \mathrm{C} \hat{\imath}\right. \\
& \vec{E}=\left(9.75 \times 10^{4} \mathrm{~N} / \mathrm{C}\right) \hat{\imath}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \vec{E}_{16}=-12 \mathrm{~N} / \mathrm{C} \hat{\imath} \\
& \vec{E}_{2 b}=\frac{9 \times 10^{9} \times\left(-12 \times 10^{-9}\right)}{13^{2}}(-\hat{i})=(0.64 \mathrm{~N} / \mathrm{C}) \hat{\imath} \\
& \vec{E}_{b}=(-12+0.64) \hat{\imath}=(-11.36 \mathrm{~N} / \mathrm{C}) \hat{\imath}
\end{aligned}
$$

(c) $\quad \vec{E}_{1 c}=\frac{9 \times 10^{9} \times 12 \times 10^{-9}}{(13)^{2}} \hat{r}_{1}=0.64 \hat{r}_{1}$

$$
\begin{aligned}
\hat{r}_{1} & =\cos \alpha \hat{\imath}+\sin \alpha \hat{\jmath} \\
& =\frac{5}{13} \hat{\imath}+\frac{12}{13} \hat{\jmath}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{E}_{10}=0.64 \times \frac{5}{13} \hat{\imath}+0.64 \times \frac{12}{13} \hat{\jmath} \mathrm{~N} / \mathrm{C} \\
& \vec{E}_{2 c}=-0.64 \times\left(\frac{-5}{13} \hat{\imath}+\frac{12}{13} \hat{\jmath}\right) \mathrm{N} / \mathrm{C} \\
& E_{\text {Tot }}=(0.49 \mathrm{~N} / \mathrm{C}) \hat{\imath}
\end{aligned}
$$

Field near a disk

$$
\begin{aligned}
& d E=k \frac{d Q}{x^{2}+r^{2}} \\
& d E_{x}=d E \cos \alpha \\
& E_{x+01}=\int d E_{x}=\frac{k \cos \alpha}{x^{2}+r^{2}} \int d \theta \\
& \\
& =\frac{Q k \cos \alpha}{x^{2}+r^{2}} \\
& \\
& =\frac{Q}{4 \pi \epsilon_{0}} \frac{x}{\left(x^{2}+r^{2}\right)^{3 / 2}} \quad E_{y}=0
\end{aligned}
$$

Surface

$$
\begin{aligned}
& d E_{x}=\frac{d Q}{4 \pi \epsilon_{0}} \frac{x}{\left(r^{2}+x^{2}\right)^{3 / 2}}=\frac{\sigma x}{4 \pi \epsilon_{0}} \frac{2 \pi r d r}{\left(r^{2}+x^{2}\right)^{3 / 2}} \\
& E_{x}=\frac{\sigma x}{2 \epsilon_{0}} \int_{0}^{R} \frac{r d r}{\left(x^{2}+r^{2}\right)^{3 / 2}} \\
& z^{2}=x^{2}+r^{2} \\
& 2 z d z=2 x d r \\
& z \in\left[x, \sqrt{R^{2}+x^{2}}\right] \\
& =\frac{\sigma x}{2 \epsilon_{0}} \int_{x}^{\sqrt{R^{2}+x^{2}}} \frac{z d z}{z^{3 / 2}}=\frac{\sigma x}{2 \epsilon_{0}}\left[\frac{-1}{\sqrt{x^{2}+R^{2}}}+\frac{1}{x}\right] \\
& R \rightarrow \infty \\
& E=\frac{\sigma}{2 \epsilon_{0}} \\
& =\frac{\sigma}{2 \epsilon_{0}}\left[1-\frac{x}{\sqrt{x^{2}+R^{2}}}\right]
\end{aligned}
$$

Infinite ourtaue

Two oppositely chayed shent 三 capacior

$$
\left.E_{1}+E_{2}=0 \quad \begin{gathered}
+ \\
\hline \left.\begin{array}{c}
E_{1}+E_{2} \\
=\frac{\sigma}{\epsilon_{0}} \\
\hline
\end{array} \right\rvert\, \quad E_{1}+E_{2}=0, \\
1 \\
\hline
\end{gathered} \right\rvert\,
$$

$$
E=\frac{\sigma}{\epsilon_{0}}=\frac{Q}{A \epsilon_{0}}
$$

