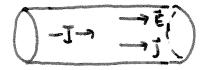
LIO Circuits, E.M.F., Power & Model of resistance Last time we learned that the fluid of electricity

Today we will discuss how we set up a constant current inside a metal, and this will involve the concept of a circuit - literally a closed "loop" around which electrical current can flow. We'll also learn about " Electro-molive force" - actually the driving Voltage that pumps charge around a circuit. 25.4

In order for electrons to flor, they need a complete circuit. If a circuit is broken, charge quickey builds up a the end of the Lire, producing an electric field which carvels the external electric field

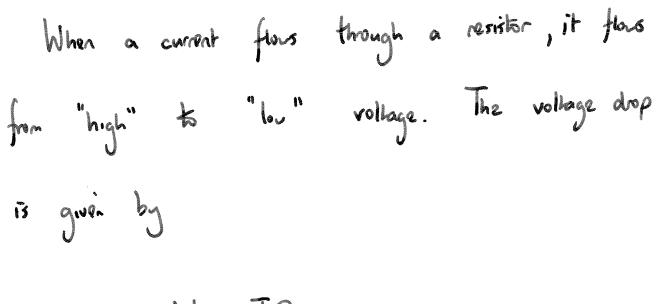
6)

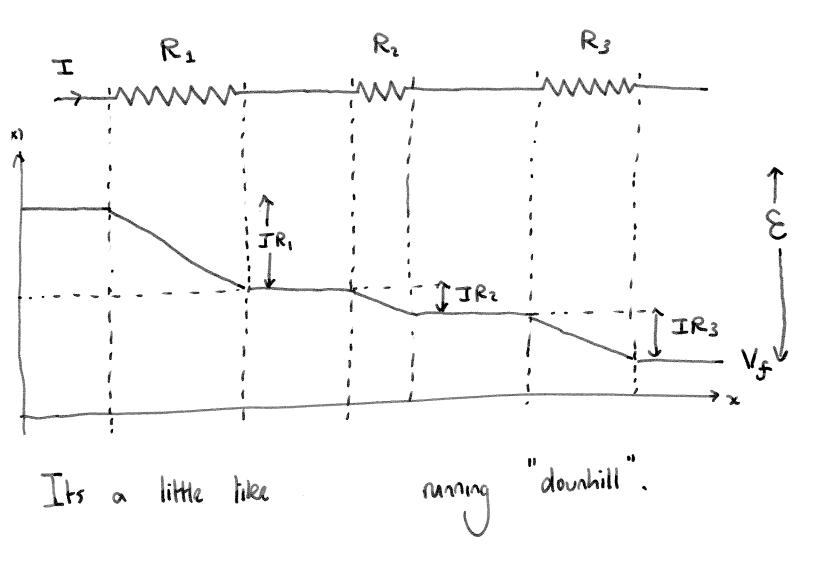


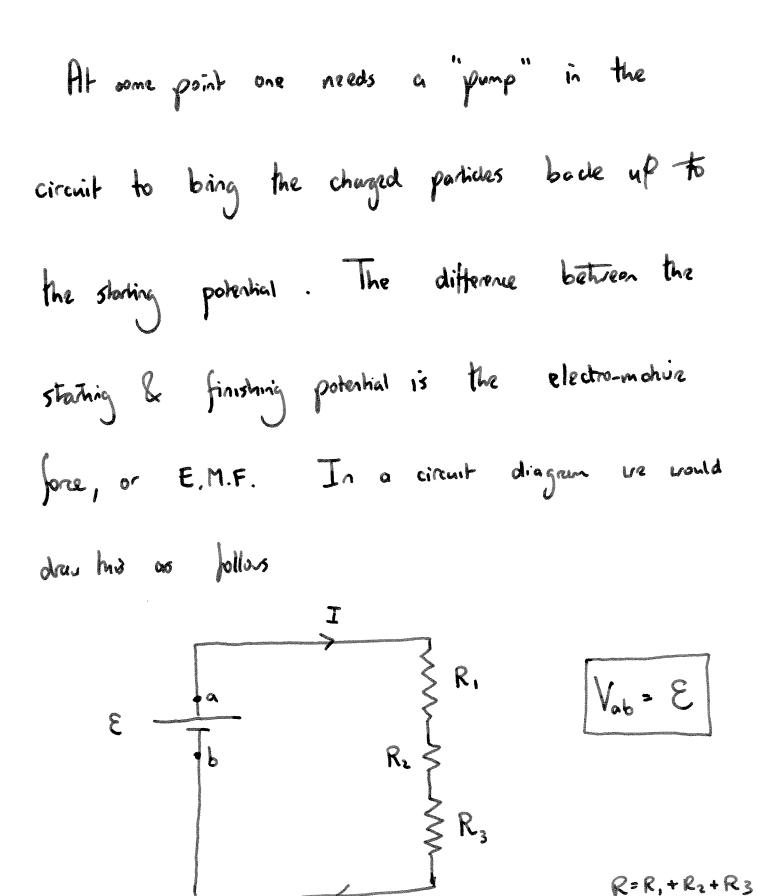
9)

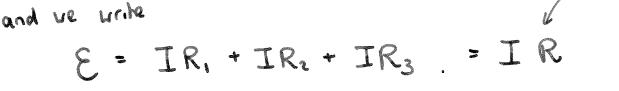
 $\xrightarrow{} E_1$ Build up of charge at ends of boken circuit produces a field Ez which exactly cancels the external field.

25.4 E.M.F.







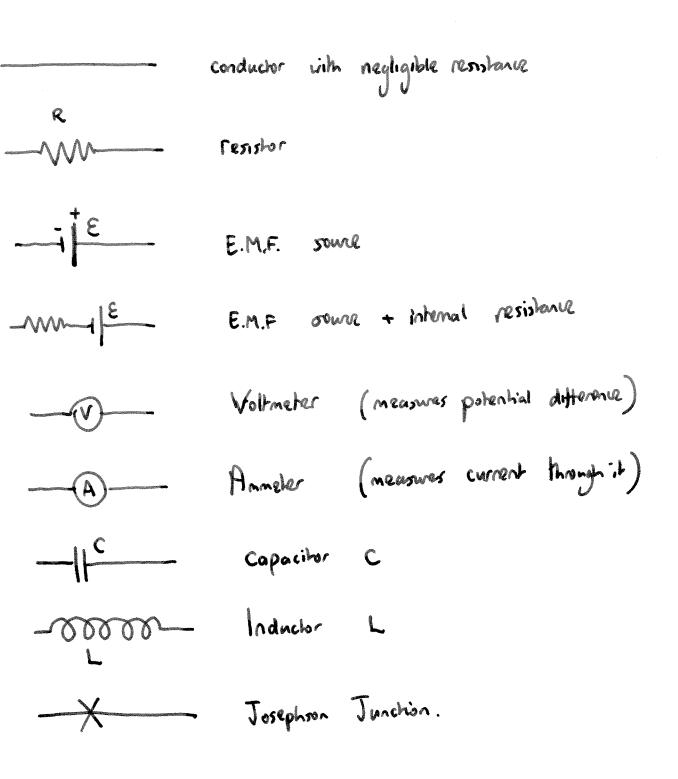


We denote such a battery by the circuit diagram

$$E$$

 $-1 + mm$
 $i \in Ir \rightarrow i$
 $E = Ir + IR$
 $i n ternal$
restitional external
restitional external

SYMBOLS FOR CIRCUIT DAGRAMS



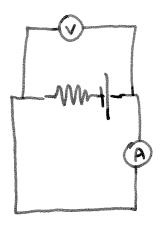
e.g Source on open circuit. Battery with EMC
$$\mathcal{E} = 10V \mathcal{R}$$

withernal resistance $r = 3.2$. What is
a) current + vollage in an open circuit?
b) current + vollage when connected in series with a 7.R
resistor ?
c) current & vollage when onort-circuited ?
c) current & vollage when onort-circuited ?
c) current & vollage when onort-circuited ?
c) $\frac{Open circuit}{3R + 10}$
 $T = 0$ on Ammeter
Vab = $\mathcal{E} - IRT = \mathcal{E} = 10V$
b) $\frac{\sqrt[3]{R}}{3R + 10}$
 $\mathcal{E} = I(r+R)$
 $\mathcal{E} = I(r+R)$

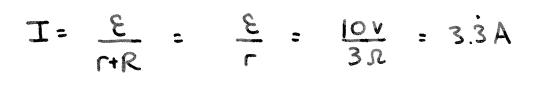
$$7\pi$$

 $\begin{aligned} & 3 & 10 \\ & \xi = I(r+R) \\ & = I(10R) \\ & = I(10R) \\ & = \frac{E}{10} = \frac{1A}{10} \\ & V_{0b} = \frac{E}{10} = \frac{1A}{10} \\ & V_{0b} = \frac{10}{1 \times 3R} \\ & = \frac{10}{7} \\ & = \frac{10}{7}$

C)



Short circuit



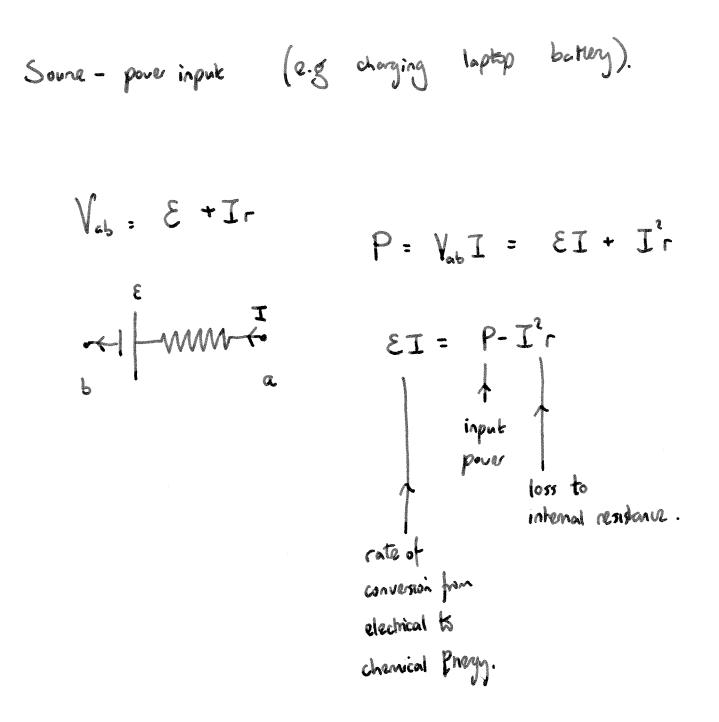
$$V = 8 - Ir = 0$$
.

25.5 ENERGY + POLER

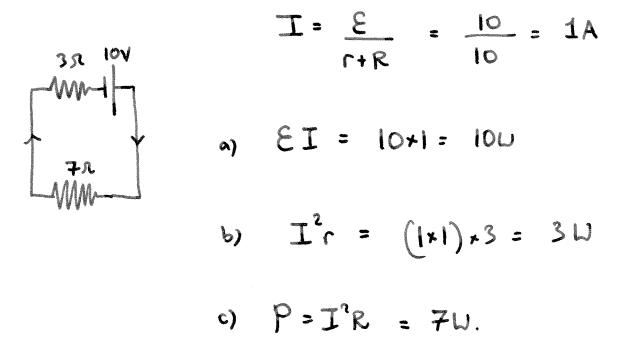
Work done on device =
$$dq V_{ab} = dq(V_a - V_b) = dW$$

 $I \xrightarrow{a} \xrightarrow{b} dq = I dt$
 $dW = dq V_{ab} = I V_{ab} dt$
 $P = dW = I V_{ab}$
 $dV = I V_{ab}$
 $(I C/s)(IJ/c) = 1J/s = IW$
UAIT

For a pure resistor,
$$P = IV_{ab} = I^2R = \frac{V_{ab}^2}{R}$$



e.d



In an electric field, electrons acquire a drift velocity Vd. The current density is then

Now we leave that the electron accelerates in a field. Lite an acceleration

$$\vec{a} = \frac{\vec{F}}{m_e} = \frac{\vec{q}\vec{E}}{m_e}$$

The velocity after a time t is $\vec{v} = \vec{v}_0 + \vec{a} t$

The average of this quantity, $v_d = \langle v \rangle = \langle v \rangle + a \langle t \rangle$, is the drift velocity.

But the average velocity after a collision is zero $\langle vo \rangle = 0$ and the average time between collisions $\langle t \rangle = \Upsilon$, the collision time, so

$$\vec{v}_d = \vec{a} \tau = q \vec{E} \tau$$

and herve the current density is

$$\vec{J} = nq^{2} \vec{r} \vec{E}$$

m

But $\vec{J} = \vec{L} \vec{E}$ where \vec{g} is the resistivity, or

•

Calculate the scattering time T for
silver, where
$$g = 1.47 \times 10^{-8} \Omega m$$
 and

$$n_e = 5.9 \times 10^{28} m^{-3}$$
.

e.d

$$g = \frac{m}{ne^2 T} \implies T = \frac{m}{ne^2 g}$$

$$T = \frac{9.1 \times 10^{-31} \text{ kg}}{(5.9 \times 10^{28} \text{ m}^{-3})(1.6 \times 10^{-19})^{2}(1.47 \times 10^{-8} \text{ Rm})}$$

Abort 2.5× 10¹³ or 25,000,000,000,000,000 collisions per orecond!