L10 Circuits, E.M.F., Power \& Model of wesithacie

Last time we learned that the fluid of electricity is made up of elections or holes, moving at an incredibly high velouty. The scatting of these elections inside the metal means that their average drift velocity is only a fraction of a mm per second.

Today we will discuss how we set up a constave current inside a metal, and this will involve the conupl of a circuit - literally a closed "loop" awned which elechical current can flows. Well abo lean about Electo-molis foe" - actually the driving Voltage that pumps charge around a circuit.
25.4

In order for electrons to flows, they need a complete circuit. If a circuit is boles, change quidery builds up a the end of the live, producing an electric field which conuets the external electric field

$$
0-I \rightarrow \overrightarrow{G_{i}^{\prime}}
$$

a)

b)

Build up of change at ends of broken cirenit produces a field \vec{E}_{i} which exactly cancels the external field.
25.4 E.M.F.

When a current flows through a resistor, it flows from "high" b "lou" voltage. The voltage dap is gave by

$$
V_{a b}=I R
$$

Its a little live

At some point one needs a "pump" in the
circuit to bong the changed patides bade u Q to
the storting potential. The difference between the
stating \& finishing potential is the electromochin fore, or E.M.F. In a circuit diagrams we would dree tues follows

and we wert

$$
\varepsilon=I R_{1}+I R_{2}+I R_{3}=I R
$$

Internal resistance

In pruchir, all E.M.F sones (baltenes, solar cells, themoconpes, fuel cells) have an intemal resistance. We label this as "r". When a current flows, the internal resistance r reduces the output voltage

$$
V_{a b}=\varepsilon-I r
$$

We denote such a batty by the circuit diagram

or

symbols For Circuit Dagrams
\qquad conductor with negligible resistanie
\qquad resishor

E.M.F. soure
$-M \sim-11^{\varepsilon}$
E.M.F oowre + inhemal resistanve

Viv

- (A)

-80000

Voltmater (measuras porential dittrance)
Amagler (measwes current thoughi: it)

Capacibor C
Inductor L

Josephren Junchion.
e.g Sovis on open circuit. Baltery with EMF $\varepsilon=10 \mathrm{~V}$ \& intemal resiotane $r=3 \Omega$. What is
a) current + vollaye in an opan circuit?
b) currenb + vollage when comeched in seres with a 7Ω resisibar?
c) curmant \& vollage when onorb-circuited?
a)

Open circuit
$I=0$ on Ammeter

$$
V_{a b}=\varepsilon-I \mathbb{F}=\varepsilon=10 \mathrm{~V}
$$

b)

$$
\begin{aligned}
\varepsilon & =I(r+R) \\
& =I(10 \Omega) \\
\Rightarrow I & =\frac{\varepsilon}{10}=1 \mathrm{~A} . \\
V_{a b} & =\varepsilon-I r \\
& =10-1 \times 3 \Omega \\
& =7 \mathrm{~V}
\end{aligned}
$$

a)

Short cricuit

$$
\begin{aligned}
& I=\frac{\varepsilon}{r+R}=\frac{\varepsilon}{r}=\frac{10 \mathrm{~V}}{3 \Omega}=3.3 \mathrm{~A} \\
& V=\varepsilon-I r=0 .
\end{aligned}
$$

25.5 Energy + Power

bat

For a pure resistor,

$$
P=I V_{a b}=I^{2} R=\frac{V_{a b}^{2}}{R}
$$

Source - power output.

$$
=M M-1 \rightarrow
$$

$$
\begin{aligned}
& P=I V_{a b} \\
&=I(\varepsilon-I r) \\
&=\varepsilon I-I^{2} r \\
& \\
& \\
& \\
& \text { loss to internal } \\
& \text { rerithane }
\end{aligned}
$$

Soune-pove inpuk (e.g charging laptop battey).

$$
V_{a b}=\varepsilon+I_{r}
$$

$$
P=V_{a b} I=\varepsilon I+I^{2} r
$$

$$
\begin{aligned}
& \varepsilon I=P-I^{2} r \\
& \underset{\substack{\text { input } \\
\text { powes }}}{\uparrow} \uparrow \\
& \text { loss to } \\
& \text { inkemal residane. }
\end{aligned}
$$

rate of converson fom electrical k
chancal Preyy.
e.f Powes output from a sovere. Find
(a) rate of evergy conversion (chemical to electrical)
(b) rate of dissipation of pnegy in battey.
(c) poser ontput.

$$
I=\frac{\varepsilon}{r+R}=\frac{10}{10}=1 \mathrm{~A}
$$

a) $\varepsilon I=10 \times 1=10 \mathrm{w}$
b) $I^{2} r=(|x|) \times 3=3 W$
c) $P=I^{2} R=7 \mathrm{~W}$.
25.6 Drude Model for Resistivity.

In an electric field, electrons acquire a drift velocity \vec{V}_{d}. The current density is then

$$
\vec{J}=n q \vec{v}_{d}
$$

Now we kinos that the electron accelerates in a field with an acceleration

$$
\vec{a}=\frac{\vec{F}}{m_{q}}=\frac{q \stackrel{\rightharpoonup}{E}}{m_{q}}
$$

The velocity after a time is

$$
\vec{V}=\vec{V}_{0}+\vec{a} t
$$

The average of this quantity, $\left.v_{d}=\langle v\rangle=\langle v o\rangle+a\langle \rangle\right\rangle$, is the drift velocity.

But the average velocity after a collision is zero <vo>=0 and the average time between collisions $\langle\dagger\rangle=\uparrow$, the collision time, so

$$
\vec{V}_{d}=\vec{a} T=\frac{q \vec{E}}{m} T
$$

and here the current density is

$$
\vec{J}=\frac{n q^{2} T}{m} \vec{E}
$$

But $\vec{J}=\frac{1}{\rho} \vec{E}$ where ρ is the resistivity, ∞

$$
\rho=\frac{m}{n e^{2} T}
$$

Drupe formula.
e.f Calculate the scatreing hine T for sivie, whene $\rho=1.47 \times 10^{-8} \Omega \mathrm{~m}$ and

$$
\begin{aligned}
n_{e} & =5.9 \times 10^{28} \mathrm{~m}^{-3} \\
\rho & =\frac{m}{n e^{2} \tau} \Rightarrow \tau=\frac{m}{n e^{2} \rho} \\
T & =\frac{9.1 \times 10^{-31} \mathrm{~kg}}{\left(5.9 \times 10^{28} \mathrm{~m}^{-3}\right)\left(1.6 \times 10^{-19}\right)^{2}\left(1.47 \times 10^{-8} \Omega \mathrm{~m}\right)} \\
& =4.1 \times 10^{-14} \mathrm{~s}
\end{aligned}
$$

Abouk $\quad 2.5 \times 10^{13}$ or $25,000,000,000,000$ collisions per orcond!

