Remember: \(B = \mu_0 n I \) inside a long solenoid

\[
\varepsilon_{\text{induced}} = -\frac{d\Phi_B}{dt} = -L \frac{dI}{dt} ; \quad \Phi_B = B \cdot A = BA \cos \theta ; \quad L = \frac{N\Phi_B}{I}
\]

\(\mu_0 = 4\pi \times 10^{-7} \text{ Wb}/\text{A} \cdot \text{m} = 1.26 \times 10^{-6} \text{ N/A}^2; \)

Area of circle = \(\pi R^2 \); Circumference of circle = \(2\pi R \);

\(\sin 30^\circ = \cos 60^\circ = 1/2 ; \quad \sin 60^\circ = \cos 30^\circ = \sqrt{3}/2 ; \quad \sin 45^\circ = \cos 45^\circ = \sqrt{2}/2 \)

Correct answers have correct electrical units and 2 significant figures.

You are given an air-filled solenoid with \(N \) turns, radius \(R \) and length \(Z \) where the current \(I(t) \) changes as a function of time, \(\frac{dI}{dt} \neq 0 \).

A. At the instant when the current is \(I \), what is the direction of the field \(B \) in the center of the solenoid in the figure? Circle one of the following: into the page, out of the page, to the left, to the right, no field.

B. At the instant when the current is \(I \), what is the magnitude of the field \(B \) in the center of the solenoid?

\[
B = \mu_0 n I = \mu_0 \left(\frac{N}{Z} \right) I
\]

C. What is the magnetic flux \(\Phi_B \) through a single turn of the solenoid?

\[
\Phi_B = B \cdot A = \mu_0 \left(\frac{N}{Z} \right) I \pi R^2
\]

D. What is the self-inductance \(L \) of the entire solenoid?

\[
L = \frac{\Phi_B}{\frac{dI}{dt}} = \frac{\mu_0 \left(\frac{N}{Z} \right) I \pi R^2}{\frac{dI}{dt}} = \frac{\mu_0 N^2 \pi R^2}{Z}
\]

E. If \(R = 0.020 \text{ m}, Z = 0.50 \text{ m}, N = 500 \) and \(\frac{dI}{dt} = 10 \text{ A/s} \), what is the numerical value of the self-inductance \(L \) of the entire solenoid?

\[
L = \left(1.26 \times 10^{-6} \frac{\text{N}}{\text{A}^2} \right) \left(500 \right)^2 \pi \left(0.020 \text{ m} \right)^2 / 0.50 \text{ m}
\]

\[
= 7.9 \times 10^{-4} \text{ H}
\]