Announcements

This week:

• Homework 6 due Thursday March 28:
 • Chapter 26 sections 3-5 + Chapter 27
• Recitation on Friday March 29: Chapter 27+28.
• Quiz on Friday March 29:
 • Homework 6, Lectures 12, 13 and 14
Summary Chapter 27

- Properties of magnets, and how magnets interact with each other.
- Visualizing magnetic field lines.
- No magnetic monopoles
- Magnetic flux thru closed surface
- Analyzing magnetic forces on moving charged particles
- Application: cyclotron motion
- Force on current carrying wires
- Current carrying loops:
 - Magnetic moment
 - Torque, potential energy in B-field
- DC Motor

\[\Phi_B = \oint B \cdot d\vec{A} = 0 \]

\[\vec{F} = q\vec{v} \times \vec{B} \quad R = \frac{mv}{qB} \]

\[\vec{F} = I\vec{\ell} \times \vec{B} \]

\[\vec{\mu} = I\vec{A} \]

\[\vec{\tau} = \vec{\mu} \times \vec{B} \quad U = -\vec{\mu} \cdot \vec{B} \]
Lecture 15: March 25 Chapter 28a

Sources of magnetic fields
Electrostatics=>Magnetostatics

Review of electrostatics

- Electric force on a charged particle: \(\vec{F} = q \vec{E} \)

- Electric flux through a closed surface:
 \[
 \Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{enclosed}}}{\varepsilon_0}
 \]

- Electric dipoles: \(\vec{p} = q \vec{d} \)
 \[
 \vec{\tau} = \vec{p} \times \vec{E} \quad U = -\vec{p} \cdot \vec{E}
 \]

- Electric work done during a closed loop (circuit):
 \[
 \oint \vec{E} \cdot d\vec{l} = 0
 \]

Magnetostatics analogy

- Magnetic force on charged particle: \(\vec{F} = q \vec{v} \times \vec{B} \)

- Magnetic flux through a closed surface:
 \[
 \Phi_B = \oint \vec{B} \cdot d\vec{A} = 0
 \]

- Magnetic dipoles: \(\vec{\mu} = I \vec{A} \)
 \[
 \vec{\tau} = \vec{\mu} \times \vec{B} \quad U = -\vec{\mu} \cdot \vec{B}
 \]

- Work done by magnetic force around a closed loop?
 \[
 \oint \vec{B} \cdot d\vec{l} = ??
 \]
Chapter 28: Sources of magnetic fields

- Calculating magnetic fields
 - Single moving charged particle
 - Straight current-carrying wire
 - Current-carrying wire bent into a circle
- Forces between current carrying wires
- Calculating magnetic fields from current distributions => Ampere’s Law
 - How to get a uniform magnetic field
Magnetic field of a moving charge

A moving charge generates magnetic field that depends on
- velocity of the charge
- distance from the charge
- Direction: right hand rule
 - Cross product

\[B(r) = \frac{\mu_0}{4\pi} q \frac{\mathbf{v} \times \mathbf{r}}{r^2} = \frac{\mu_0}{4\pi} q \frac{\mathbf{v} \times \mathbf{r}}{r^3} \]

\[\mu_0 = 4\pi \cdot 10^{-7} \, \frac{Ns^2}{C} = 4\pi \cdot 10^{-7} \, \frac{T \cdot m}{A} \]

\(\mu_0 \) is vacuum permeability
A moving charge generates magnetic field that depends on:
- velocity of the charge
- distance from the charge
- Direction: right hand rule

\[\vec{B}(r) = \frac{\mu_0 q}{4\pi} \left(\vec{v} \times \vec{r} \right) = \frac{\mu_0 q}{4\pi} \left(\vec{v} \times \vec{r} \right) \]

\[\mu_0 = 4\pi \cdot 10^{-7} \frac{Ns^2}{C} = 4\pi \cdot 10^{-7} \frac{T \cdot m}{A} \]

\(\mu_0 \) is vacuum permeability
A positive point charge is moving directly toward point P. The magnetic field that the point charge produces at point P

A. points from the charge toward point P.

B. points from point P toward the charge.

C. is perpendicular to the line from the point charge to point P.

D. is zero.

E. The answer depends on the speed of the point charge.

\[\vec{B}(r) = \frac{\mu_0}{4\pi} q \frac{\vec{v} \times \vec{r}}{r^2} = \frac{\mu_0}{4\pi} q \frac{\vec{v} \times \vec{r}}{r^3} \]
Magnetic field of a current element

Instead of a single moving charge, consider current carrying wire

B field from superposition of charge in each segment

\[\vec{B}(r) = \frac{\mu_0}{4\pi} q_{\text{seg}} \frac{\vec{v} \times r}{r^2} \]

Charge of carriers in wire segment volume=Adℓ

\[q_{\text{seg}} = \sum_i q_i = neA d\ell \]

\[I = nev_d A \quad \Rightarrow \quad q_{\text{seg}} \vec{v}_d = I d\ell \]

\[d\vec{B}(r) = \frac{\mu_0}{4\pi} I \frac{d\ell \times r}{r^2} \]
Magnetic field of a current element

Instead of a single moving charge, consider current carrying wire

Superposition of each segment

\[\vec{B}(r) = \frac{\mu_0}{4\pi} q_{\text{seg}} \frac{\vec{v} \times \vec{r}}{r^2} \]

\(\vec{B}(r) \) proportional to \(1/r^2 \)

Similar to \(E \) field of a point charge

Direction: current element \(I d\vec{\ell} \times \vec{r} \)

Law of Biot-Savart
Example: Magnetic Field of circular current carrying loop

B field at center of circular current carrying loop of radius R?

Contribution of a small portion of the loop:

\[
\delta \vec{B}(r) = \frac{\mu_0}{4\pi} I \frac{\vec{d}\ell \times \hat{r}}{R^2}
\]

\[
\vec{d}\ell \times \hat{r} \text{ all in same direction and } \perp
\]

\[
\sum \delta B(r) = \frac{\mu_0}{4\pi} I \frac{\sum d\ell}{R^2} \quad \sum d\ell = 2\pi R
\]

Field at center of loop

\[
B(0) = \frac{\mu_0 NI}{2\pi R}
\]

If N turns in loop, B is N times stronger
In the figure an irregular loop of wire carrying a current lines in the plane of the paper. Suppose that the loop is distorted into some other shape while remaining in the same plane. Point P is still within the loop. Which of the following is a TRUE statement concerning this situation?

A. The magnetic field at point P will always lie in the plane of the paper.

B. It is possible that the magnetic field at point P is zero

C. The magnetic field at point P will not change in magnitude when the loop is distorted.

D. The magnetic field at point P will not change in direction when the loop is distorted.

E. None of the other statements is true.
Magnetic field of a straight current-carrying conductor

\(\textbf{B} \) field a distance \(x \) from long wire

Consider a small element of wire \(d\ell \)

Choose origin at point \(P \)

\[
\textbf{d}\textbf{B}(r) = \frac{\mu_0}{4\pi} \frac{I \, d\ell \times (-\hat{r})}{r^3}
\]

\(d\textbf{B} \) points into the page

To solve for \(\textbf{B} \) need to express all variables in terms of angle \(\phi \)

To calculate \(\textbf{B} \): \(-90^\circ \leq \phi \leq +90^\circ \)

At point \(P \), the field \(d\textbf{B} \) from \(d\ell \) points into the page

Total field \(\textbf{B} \) from the entire conductor also points into the page
Magnetic field of a straight current-carrying conductor

B field a distance x from wire

Consider a small element of wire $d\ell$

Choose origin at point P

$d\vec{B}(r) = \frac{\mu_0 I}{4\pi} \frac{d\ell \times (-\hat{r})}{r^3}$

$d\vec{B}$ points into the page

To solve for B need to express all variables in terms of angle ϕ

What is r in terms of ϕ?

What is $d\ell$ in terms of ϕ?
Magnetic field of a straight current-carrying conductor

de field a distance \(x \) from a small element of wire \(\text{d} \ell \)

Choose origin at point P

\[
\text{d} \vec{B}(r) = \frac{\mu_0 I}{4\pi} \frac{\text{d} \ell \times (-\hat{r})}{r^3}
\]

\(\text{d} \vec{B} \) points into the page

To solve for \(\vec{B} \) need to express all variables in terms of angle \(\phi \)

\[
\tan \phi = \frac{y}{x} \implies y = x \tan \phi
\]

\[
dy = d \ell = x \sec^2 \phi d\phi = \frac{x d \phi}{\cos^2 \phi}
\]

\[
\cos \phi = \frac{x}{r} \implies r = \frac{x}{\cos \phi}
\]

\[
r = \sqrt{x^2 + y^2}
\]
Magnetic field of a straight current-carrying conductor

\(\mathbf{dB} \) field a distance \(x \) from a small element of wire \(d\ell \)

Choose origin at point P

\(\mathbf{dB} \) points into the page

\[
\mathbf{d}\mathbf{B}(r) = \frac{\mu_0}{4\pi} I \frac{d\ell \times (-r)}{r^2}
\]
Magnetic field of a straight current-carrying conductor

d\vec{B} field a distance x from a small element of wire d\ell
Choose origin at point P

$d\vec{B}(r) = \frac{\mu_0 I}{4\pi} \frac{d\ell \times (-\hat{r})}{r^3}$

$d\vec{B}$ points into the page
To solve for B need to express all variables in terms of angle ϕ

$d\vec{B}(r) = \frac{\mu_0 I}{4\pi} \frac{d\ell \times (-\hat{r})}{r^2}$

$d\vec{B}(r) = \frac{\mu_0 I}{4\pi} \frac{d\ell \times (-\hat{r})}{r^3} = \frac{\mu_0 I}{4\pi} I\left(\frac{xd\phi}{\cos^2 \phi}\right)\cos \phi \left(\frac{\cos^2 \phi}{x^2}\right) = \frac{\mu_0 I \cos \phi d\phi}{4\pi x}$
Magnetic field of a straight current-carrying conductor

To solve for B need variables in terms of ϕ

To calculate B: $-90^\circ \leq \phi \leq +90^\circ$

$$\int dB(r) = \frac{\mu_0}{4\pi x} I \int_{\phi=\frac{-\pi}{2}}^{\phi=\frac{\pi}{2}} \cos \phi \, d\phi$$

$$d\vec{B}(r) = \frac{\mu_0}{4\pi x} I \cos \phi \, d\phi$$
Magnetic field of a straight current-carrying conductor

To solve for B need variables in terms of ϕ

To calculate B: $-90^\circ \leq \phi \leq +90^\circ$

$$\int dB(r) = \frac{\mu_0}{4\pi x} I \int_{\phi=-\pi/2}^{\phi=+\pi/2} \cos \phi \, d\phi$$

$$\vec{B}(r) = \frac{\mu_0 I}{4\pi x} [1 - (-1)] = \frac{\mu_0 I}{2\pi x}$$

Total field B from the entire conductor given by right hand rule: thumb in direction of current, hand in direction of B
Consider a wire bent in the hairpin shape. The wire carries a current I. What is the approximate magnitude of the magnetic field at point a?

Apply superposition: the net field at point a is superposition of three B fields produced by the current — the semi-circle plus two straight wires.

Semi-circle: $B(r) = \left(\frac{1}{2} \right) \frac{\mu_0 I}{2R} = \frac{\mu_0 I}{4R}$
(1/2 of the field of a circular loop)

Top wire: $B(r) = \left(\frac{1}{2} \right) \frac{\mu_0 I}{2\pi R} = \frac{\mu_0 I}{4\pi R}$
(1/2 of the field of an infinite wire)

Bottom wire: $B(r) = \left(\frac{1}{2} \right) \frac{\mu_0 I}{2\pi R} = \frac{\mu_0 I}{4\pi R}$
(1/2 of the field of an infinite wire)
Example

Consider a wire bent in the hairpin shape. The wire carries a current I. What is the approximate magnitude of the magnetic field at point a?

Apply superposition: the net field at point a is superposition of three B fields produced by the current — the semi-circle plus two straight wires.

Semi-circle: \(B(r) = \left(\frac{1}{2} \right) \frac{\mu_0 I}{2R} = \frac{\mu_0 I}{4R} \) (1/2 of the field of a circular loop)

Top wire: \(B(r) = \left(\frac{1}{2} \right) \frac{\mu_0 I}{2\pi R} = \frac{\mu_0 I}{4\pi R} \) (1/2 of the field of an infinite wire)

Bottom wire: \(B(r) = \left(\frac{1}{2} \right) \frac{\mu_0 I}{2\pi R} = \frac{\mu_0 I}{4\pi R} \) (1/2 of the field of an infinite wire)

\[
B(r) = \frac{\mu_0 I}{4R} + 2\left(\frac{\mu_0 I}{4\pi R} \right) = \frac{\mu_0 I}{4R} \left(1 + \frac{2}{\pi} \right)
\]
Interaction between 2 current carrying wires

Magnetic field due to I_1 at wire I_2

$$\vec{B}(r) = \frac{\mu_0 I_1}{2\pi r}$$

Magnetic force on wire I_2

$$\vec{F} = I_2\vec{\ell} \times \vec{B}$$

$$\frac{F}{L} = I_2B = I_2\frac{\mu_0 I_1}{2\pi r}$$

Force/unit length between current carrying wires

- Attract: when parallel currents
- Repel: when anti-parallel currents
Interaction between 2 current carrying wires

Magnetic field due to I_1 at wire I_2

$$\vec{B}(r) = \frac{\mu_0 I_1}{2\pi r}$$

Magnetic force on wire I_2

$$\vec{F} = I_2 \ell \times \vec{B}$$

$$\frac{F}{L} = I_2 B = I_2 \frac{\mu_0 I_1}{2\pi r}$$

Force/unit length between current carrying wires

- Attract: when parallel currents
- Repel: when anti-parallel currents
A wire consists of two straight sections with a semicircular section between them. If current flows in the wire as shown, what is the direction of the magnetic field at P due to the current?

A. to the right
B. to the left
C. out of the plane of the figure
D. into the plane of the figure
E. misleading question — the magnetic field at P is zero
Electrostatics

- Electric flux through a closed surface:
 \[\Phi_E = \oint E \cdot d\vec{A} = \frac{q_{\text{enclosed}}}{\varepsilon_0} \]

- Electric work done during a closed loop (circuit):
 \[\oint E \cdot d\vec{l} = 0 \]

- Only in electrostatics

Magnetostatics analogy

- Magnetic flux through a closed surface:
 \[\Phi_B = \oint B \cdot d\vec{A} = 0 \]

- Work done by magnetic force around a closed loop?
 \[\oint B \cdot d\vec{l} \neq 0 \]

- In general
Pick a ("Amperian") loop

Direction of circulation:
right hand rule for direction of current

\(\mathbf{B} \) field a distance \(r \) from straight wire with current

\[
\mathbf{B}(r) = \frac{\mu_0 I}{2\pi r}
\]

\[
\oint \mathbf{B}(\mathbf{r}) \cdot d\mathbf{\ell} = B(r) \oint d\ell = \frac{\mu_0 I}{2\pi r} (2\pi r)
\]

\[
\oint \mathbf{B} \cdot d\mathbf{\ell} = \mu_0 I
\]

Circulation of \(\mathbf{B} \) field \(\neq 0 \)
if current enclosed by loop \(\neq 0 \).
Pick a ("Amperian") loop

Direction of circulation:
right hand rule for direction of current

B field a distance r from straight wire with current

$$\vec{B}(r) = \frac{\mu_0 I}{2\pi r}$$

Pick another loop that does not enclose the current carrying wire

$$\Delta \ell = \varphi r$$

$$\oint \vec{B}(\vec{r}) \cdot d\vec{\ell} = 0 + \frac{\mu_0 I}{2\pi} \varphi + 0 - \frac{\mu_0 I}{2\pi} \varphi = 0$$

For a loop that does not enclose any current, the circulation is 0.
Circulation of B for current carrying wire

\[\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I \]

Ampere’s Law
Circulation of B field = current enclosed \(\times \mu_0 \)

Next lecture:
Use Ampere’s Law to calculate B fields of symmetric objects
Chapter 28: Summary today

- Calculating magnetic fields
 - Single moving charged particle
 \[\vec{B}(r) = \frac{\mu_0 q \vec{v} \times \hat{r}}{4\pi r^2} = \frac{\mu_0 q \vec{v} \times \hat{r}}{4\pi r^3} \]
 - Straight current-carrying wire
 \[\vec{B}(r)_{\text{line}} = \frac{\mu_0 I}{2\pi r} \]
 - Current-carrying wire bent into a circle
 \[\vec{B}(0)_{\text{loop}} = \frac{\mu_0 I}{2R} \]
- Forces between current carrying wires
 - Attract: parallel
 - Repel: anti-parallel
- Ampere’s Law: \[\oint \vec{B} \cdot d\vec{\ell} = \mu_0 I \]