Physics 227 – Final Exam Wednesday, May 9, 2018

9	CAE	WSK/	
\	Physics 227,	Section	
	RUID:		3
⇒	Code: 000		×

Your name with exam code

Your	signature							
Turn	off and put	away A	ALL elec	ctronic	devices	NOW.	NO	cell
phon	es, NO smar	t watch	nes, NO	calcula	tors.			

- 1. The exam will last from 4:00 to 7:00 PM.

 Use a # 2 pencil to make entries in the circles at the bottom of the cover sheet.
- 2. Make sure your name and RU ID are correct on the cover page. CARE-FULLY detach the cover sheet (with your name, ID and the answer circles).
- 3. During the exam, you may use pencils, NO calculator. and **THREE** $8\frac{1}{2}'' \times 11''$ sheets of paper with handwritten (both sides) equations and notes.

No marks except filled in answer circles below the line, please.

A B C D E 1: (A) (B) (C) (C) (E) 2: (A) (B) (C) (C) (E) 3: (A) (B) (C) (C) (E) 4: (A) (B) (C) (C) (E) 5: (A) (B) (C) (C) (E)	A B C D E 11: (A) (B) (C) (B) (B) 12: (A) (B) (C) (B) (B) 13: (A) (B) (C) (B) (B) 14: (A) (B) (C) (B) (B) 15: (A) (B) (C) (B)	A B C D E 21: (A) (B) (C) (D) (B) 22: (A) (B) (C) (D) (B) 23: (A) (B) (C) (D) (B) 24: (A) (B) (C) (D) (B) 25: (A) (B) (C) (D) (B)	000 000 000 000 000 000
6: (A (B) (C) (C) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	16: (A) (B) (C) (C) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	26: (A) (B) (C) (C) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	©©©©© ⊙©©©© ⊙©©©© ⊙⊝⊝⊝⊙

- The energy density on a parallel plate capacitor stays the same when its dimensions (length x width x height) are all doubled. By what factor Xdoes the stored energy change?

 - pes the stored energy change? U = U Volume.

 a) X = 1b) X = 1/2 U = u (volume)c) X = 2d) X = 8 with a volume by S = 0e) X = 4 X = 4 X = 8 X = 4 X = 8 X = 8 X = 8
- 2. A DC voltage source is connected to a resistor of resistance R and an inductor with inductance L, forming the circuit in the figure. For a long time before t=0, the switch has been in the position shown, so that a current I_0 has been built up in the circuit by the voltage source. At t=0, the switch is thrown to remove the voltage source from the circuit. After t=0, what happens to the voltage V(t) across the inductor and the current I(t) through the inductor relative to their values prior to t=0?

- V changes slowly and I changes abruptly. a)
- I changes slowly and V changes abruptly.
 - Both V and I change slowly.
 - Both V and I change abruptly but do not immediately go to zero.
 - Both V and I go immediately to zero.

The current in the long-straight wire AB shown in the figure is upward and is increasing steadily at a rate di/dt. What is the magnitude of the induced emf \mathcal{E} in the loop of height L and width b-a?

(c)
$$\mathcal{E} = \frac{\mu_0 L}{2\pi} \ln(\frac{b}{a}) \frac{di}{dt}$$

(d) $\mathcal{E} = \frac{\mu_0 L}{2\pi} \ln(\frac{a}{a}) \frac{di}{dt}$

A resistor with resistance R is connected to the plates of a charged capacitor with capacitance C. Just before the connection is made, the charge on the capacitor is Q. What is the electrical power P dissipated in the resistor Current is max as soonas just after the connection is made?

(a) $P = Q^2/(RC^2)$ b) $P = Q^2/(RC)$

- A cylindrical resistor is displayed in the Figure. It has a radius r_0 , length 5. L and resistance R. A steady current i flows along the axis of the cylinder. In what direction does the Poynting vector \vec{S} point?
 - \vec{S} points in the \hat{i} , x direction. a)
 - The Poynting vector is zero inside the resistor including its surface.
 - \vec{S} points in the $-\hat{r}$, radial di-
 - \vec{S} points in the $\hat{\theta}$, angular di-
 - \vec{S} points in the \hat{k} , direction.

countedion made and potential

- 6. A small, circular ring of wire (dotted circle) is inside a larger loop of wire that carries a current I as shown in the figure. The small ring and the larger loop both lie in the same plane. If I increases, which of the following is a correct statement about the current in the small ring?
 - a) The current in the small ring is clockwise and caused by self inductance.
 - b) The current in the small ring is zero, because the two rings of wire are not connected.
 - The current in the small ring is clockwise and caused by mutual inductance.
 - d) The current in the small ring is counter-clockwise and caused by self inductance.
 - e) The current in the small ring is counter-clockwise and caused by mutual inductance.

7. An insulating spherical shell of inner radius a and outer radius b is uniformly charged with a positive charge density. Which figure best depicts the radial component of the electric field \vec{E}_r

A current I=1 A flows around a plane circular loop of radius r=1 cm, giving the loop a magnetic moment of magnitude m. The loop is placed in a uniform magnetic field $\vec{B}=2$ T with an angle $\phi=30$ degrees between the direction of the field lines and the magnetic dipole moment, as shown in the figure. What is the magnitude of the torque τ on the current loop?

(b)
$$\tau = \pi \times 10^{-4} \text{ N-m}$$

$$\tau = 2\pi \times 10^{-4} \text{ N-m}$$

d)
$$\tau = \pi \times 10^{-2} \text{ N-m}$$

e)
$$\tau = \sqrt{3}\pi \times 10^{-4} \text{ N-m}$$

Which of the following equations implies that you get a greater emf the faster you rotate the coils of a generator? This is Fravaday +5 Law

a)
$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

b)
$$\oint \vec{E} \cdot d\vec{A} = q/\epsilon_0$$

b)
$$\oint \vec{E} \cdot d\vec{A} = q/\epsilon_0$$

c) $\oint \vec{E} \cdot d\vec{\ell} = -\frac{d\Phi_B}{dt}$
d) $\oint \vec{B} \cdot d\vec{A} = 0$

$$d) \quad \oint \vec{B} \cdot d\vec{A} = 0$$

e)
$$\oint \vec{B} \cdot d\vec{\ell} = \mu_0 I + \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}$$

A point charge $q_1 = +2$ nC is located at the origin (x = 0) and a second point charge q_2 =-6nC is at x = 0.2 m. What is the magnitude of the electric force \vec{F} on each charge in terms of $k = 1/4\pi\epsilon_0$?

a)
$$F = 10^{-16} k \text{ N}$$

b)
$$F = 12 \times 10^{-16} k \text{ N}$$

c)
$$F = 10^{-18} k$$
 N

d)
$$F = 4 \times 10^{-18} k \text{ N}$$

d)
$$F = 4 \times 10^{-18} k \text{ N}$$

e) $F = 3 \times 10^{-16} k \text{ N}$

$$F = \frac{k9.92}{V_{12}} = \frac{k(+2x10^{\circ}c)(-6x10^{\circ}c)}{(2x10^{\circ}m)^{2}}$$

14. In the figure the phasors for current i and voltage V rotate counterclockwise with angular frequency ω . Which of the following is a correct statement about this phasor diagram?

Ourrent llass
Noctase, but phasors not
perpendicular.

De ned a capecitor

and a visitor

- The phasor diagram represents an AC circuit consisting of only a resistor.
- The phasor diagram represents an AC circuit consisting of only an inductor.
- The phasor diagram represents an AC circuit consisting of resistor and a capacitor.
- The phasor diagram represents an AC circuit consisting of only a resistor and inductor.
- The phasor diagram represents an AC circuit consisting of only a capacitor.
- You are given two charges $q_1 = +4$ nC and $q_2 = -4$ nC separated by a 15. distance d = 6 mm. What are the magnitude and direction of the electric dipole moment \vec{p} ?

 - a) $\vec{p} = 24 \times 10^{-12} \text{ C-m}$, from q_1 to q_2 . b) $\vec{p} = 16 \times 10^{-12} \text{ C-m}$, from q_1 to q_2 . c) $\vec{p} = 24 \times 10^{-12} \text{ C-m}$, from q_2 to q_1 . d) $\vec{p} = 16 \times 10^{-12} \text{ C-m}$, from q_2 to q_1 .
 - - e) $\vec{p} = 96 \times 10^{-12} \text{ C-m}$, from q_2 to q_1 .

- In the figure a circular loop has radius R and carries current I_2 in a 17. clockwise direction. The center of the loop is a distance D above a long, straight current carrying wire. If the magnetic field at the center of the loop is zero, what are the magnitude and direction of the current I_1 in the wire?
 - a) $I_1 = I_2$ and goes from right to left.
 - b) $I_1 = \pi DI_2/R$ and goes from right to
 - (c)) $I_1 = \pi DI_2/R$ and goes from left to
 - d) $I_1 = DI_2/R$ and goes from right to
 - e) $I_1 = DI_2/R$ and goes from left to right.

A capacitor C_1 is charged to potential V. It is then connected in parallel to an uncharged capacitor of capacitance C_2 , and the potential drops to V/3. What is the value of C_2 ? In thaller

- what is the value of C_2 ? In thally $C_2 = 2C_1$ $C_2 = 3C_1$ $C_3 = C_1/3$ $C_4 = C_1/3$ $C_5 = C_1/3$ $C_6 = C_1/3$ $C_7 = C_1/3$ $C_8 = C_1/3$ $C_8 = C_1/3$ $C_9 =$
- The resonant frequency of a certain L-C circuit is 10^5 rad/s. If the 19. capacitance and inductance each increase by a factor of 5, what will be the new resonant frequency ω_0 ?

a)
$$\omega_0 = (1/25) \times 10^5 \text{ rad/s}$$
 initial $\omega_0 =$

(b)
$$\omega_0 = (1/5) \times 10^5 \text{ rad/s}$$

c) $\omega_0 = 1 \times 10^5 \text{ rad/s}$

- d) $\omega_0 = 5 \times 10^5 \text{ rad/s}$
- e) $\omega_0 = 25 \times 10^5 \text{ rad/s}$

Furrent
$$I_{1-rms}$$
 is in the primary? $I_{1} = I_{2} = I_{2}$

c)
$$I_{rms-1} = 30 \text{ A}$$

d) $I_{rms-1} = 3.0/\sqrt{2} \text{ A}$
e) $I_{rms-1} = 0.3\sqrt{2} \text{ A}$ $T_{rms-1} = 0.3\sqrt{2} \text{ A}$

The figure displays a circuit with EMF=10 V, $R_1 = R_2 = 2 \Omega$, $L = 2 \mu H$, 21. and $C=2 \mu F$. At time t=0 the switch is closed. What is the current I at T(RC) = RC = (252)(2x10-6 F) = 4x10-6CC(5 time t = 1 s?

$$L = 1/2$$
 = $101/2$ = 5 A

An electromagnetic standing wave in air has a frequency $f = 30$ MHz.

- 22. What is the distance Δx between a nodal plane of the electric field \vec{E} and the closest nodal plane of the magnetic field \vec{B} ? Note $c = 3 \times 10^8$ m/s.
 - $\Delta x = 10 \text{ m}$
 - $\Delta x = 1.0 \text{ m}$
 - c) $\Delta x = 5 \text{ m}$
 - d) Need to be given the wavelength of the standing wave.
- distance between node of E wave at node of $X = \frac{3 \times 10^5 \text{ m/s}}{30 \times 10^{-6} \text{ s}} = 10 \text{ m}$.

25. In the L-C circuit in the figure, the inductance L=0.5 H and the capacitance C=4 μ F. At the instant when the current in the inductor is changing at a rate of dI/dt=3 A/s, what is the magnitude Q of the charge on the capacitor?

26. In the figure a circuit is displayed with a voltage source that varies as a function of time $V(t) = V_0 \cos(\omega t)$. Which of the following statements is FALSE?

I(t)

C:

- a) When the alternating voltage $V_C(t)$ across the capacitor is zero, the magnitude of the current I(t) must be a maximum. TR $U \in \mathcal{C}$
- b) When the charge Q on the capacitor is maximum, the current must be zero. Thu E
- c) When $V_b > V_a$ the current I may be directed either clockwise or counterclockwise.
- d) The current through the capacitor is given by $I_C(t) = V_0 \omega C \cos(\omega t + \pi/2)$
- When $V_b > V_a$ the derivative of the current dI(t)/dt is positive.

27.

Lag= L1+62= 3L

28. An intense light source radiates uniformly in all directions. At a distance r from the source, the radiation pressure on a perfectly absorbing surface is p_{rad} and the intensity is I. What is the total average power output P_{av} of the source?

In the circuit in the figure, neither the battery nor the inductors have any appreciable resistance, the capacitors are initially uncharged and the

of the source?

a) $P_{av} = cp_{rad}$ (b) $P_{av} = cp_{rad}(4\pi r^2)$ (c) $P_{av} = 2cp_{rad}(4\pi r^2)$ d) $P_{av} = cp_{rad}(2\pi r)$ e) $P_{av} = 2cp_{rad}$ $P_{av} = 2cp_{rad}(2\pi r)$ $P_{av} = 2cp_{rad}(2\pi r)$

29. A positive point charge is moving directly towards point P with velocity v. Which of the following statements about the magnetic field that the point charge produces at point P is TRUE?

- The magnetic field that the point charge produces at P points from the charge toward point P. FALSE
- The magnetic field that the point charge produces at P points from b) point P toward the charge. FASE
- The magnetic field that the point charge produces at P is perpendicular to the line from the point charge to point P. FASE
- The magnetic field that the point charge produces at P is zero. The The answer depends on the speed of the point charge. IACSE

B(r) = Mog vxr valrane msame 411 g vxr derection = 3 = 0

You are given two metals. Metal A has $\rho_A = 20 \times 10^{-8} \ \Omega$ -m and Metal B has $\rho_B = 5 \times 10^{-8} \ \Omega$ -m. What diameter d_B of a Metal B wire has the same resistance as a wire of the same length of Metal A with $d_A = 4$ mm?

(a)
$$d_B = 2 \text{ mm}$$

b) $d_B = 4 \text{ mm}$

$$d_B = 4 \text{ mm}$$

c)
$$d_B = 1 \text{ mm}$$

$$d) \quad d_B = 0.5 \text{ mm}$$

e)
$$d_B = 0.25 \text{ mm}$$

$$R_A = \int_A L = \int_A L = R_B = \int_B L$$

$$\frac{\pi}{A_A} = \frac{\pi}{\pi} \left(\frac{d^2 x}{\pi} \right)^2 = \frac{\pi}{\pi} \left(\frac{d^2 x}{2} \right)^2$$

$$\left(\frac{dB}{dA}\right)^{2} = \frac{PB}{PA} = \frac{5 \times 10^{-8} \text{ N} - m}{20 \times 10^{-8} \text{ N} - m} = \frac{1}{4}$$