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Abstract

CdCr2O4 is a magnetic compound that crystallizes into what is known as a cubic spinel structure,

and the magnetic properties stem from the Cr3+ ions, which form a network of corner-sharing tetra-

hedra. Despite the presence of relatively strong antiferromagnetic, nearest-neighbor interactions

between these ions, the peculiar spatial arrangement of the Cr atoms within the spinel structure

actually serves to suppress magnetic order. In fact, true long-range, elastic magnetic order is es-

tablished only after cooling to the Néel temperature TN = 7.8K, which is one order of magnitude

smaller than the Curie-Weiss temperature |ΘCW | = 88K, the temperature at which magnetic or-

der is expected. In addition, a structural transition, in which the dimensions of the cubic unit cell

distort tetragonally such that c > a = b, occurs at the same temperature as the onset of long-range

magnetic order at TN . Below TN , CdCr2O4 exhibits normal spin wave excitations, which are inelas-

tic features characteristic of ordered magnetic phases. These excitations transform into quasielastic

spin fluctuations above TN , the scattering from which is broad in both momentum Q and energy

h̄ω, and persist up to T ≈ |ΘCW |. This is consistent with the presence of short-range ordered

(small) clusters of spins having short-lived (dynamic) magnetic correlations in the paramagnetic

(disordered) phase. By comparing the neutron inelastic scattering intensity to model calculations,

we find that these clusters organize into hexagonally shaped loops of antiferromagnetically ordered

spins.
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I. BASICS OF NEUTRON SCATTERING

A. The Neutron as a Probe of Matter

It is the ability of the neutron to exchange a measurable amount of energy ∆E with a

liquid or solid sample that makes it useful as a probe of the numerous dynamical phenomena

exhibited by condensed matter systems.1 Typical neutron energies available at a reactor

source can range from 100 – 500 meV (hot), to 5 – 100 meV (thermal), to 0.1 – 10 meV

(cold), where 1 meV = 10−3 eV = 8.06 cm−1. A number of different methods can be used

to prepare a monochromatic (or monoenergetic) beam of neutrons having energies that are

comparable in magnitude to, for example, those of the lattice vibrations (phonons) in a solid,

the spin excitations (magnons) in a magnetic material, the torsional, bending, or stretching

vibrations of a polymer chain, or the rotational motions (librons) in a molecular solid. It is

usually quite easy to detect the change in the neutron energy after scattering from a sample

because the energy transferred to or from the sample ∆E = Ei − Ef generally represents a

significant fraction of the initial and final neutron energies Ei and Ef . Note that this is not

the case with x-rays.

The energy ∆E transferred during the interaction between neutron and sample can be

used to create an excitation (such as a phonon or magnon) of the system, in which case the

neutron loses an amount of energy ∆E equal to the energy of the excitation. Conversely, the

same excitation can give up its energy to the neutron, in which case the excitation is said

to be annihilated. In either case, the physics of the excitation as revealed by the absolute

change in the neutron energy is the same. The energy transfer ∆E is often expressed as a

frequency of vibration through the relation

∆E = h̄ω, (1)

where 2πh̄ = h = 6.626× 10−34 Joules-seconds is Planck’s constant, and ω is the frequency

of vibration of the excitation. Since frequency and time are inversely related, the neutron

energy transfer h̄ω reflects the time scale of the dynamics being probed.
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Question: Estimate the value of (∆E/Ei) required to observe an optic phonon

with an energy of 10 meV using x-ray, light, and neutron scattering techniques

assuming the values of Ei = 7,000 eV, 2 eV, and 30 meV (0.030 eV), respectively.

Which technique is best suited for this measurement?

In addition to having energies that are well adapted to the study of a large variety of

dynamical phenomenon, neutrons also possess the ability to provide, simultaneously, unique

information about the geometry of these dynamics through the exchange of momentum with

the sample. This is done by measuring in what directions (i. e., through what angles) the

neutrons scatter. The momentum of a neutron varies inversely with the neutron wavelength

λ, and hence an accurate measure of the momentum transferred between sample and neutron

during the scattering process will provide information about the spatial scale of the dynamics

being probed. Such an accurate measure is relatively easy to obtain as long as the neutron

wavelength is comparable to the length scale of the motions of interest.

Question: The relationship between wavelength and energy for the neutron is

given by:

E =
h2

2mλ2
= 81.81(meV · Å2)/λ2, (2)

where m = 1.675 × 10−24 grams is the mass of the neutron. Using this equation,

estimate the wavelengths corresponding to hot, thermal, and cold neutrons avail-

able at a reactor source. How do these wavelengths compare with the length scales

associated with the dynamics or motions that you are specifically interested in?

In the following sections we will discuss the partial differential scattering cross section,

which is the actual physical quantity that is measured by neutron spectroscopy. We then

outline the basic operating principles behind a triple-axis spectrometer (TAS), the concept

for which Bertram Brockhouse earned the 1994 Nobel prize in physics shared jointly with

Clifford Shull.
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B. The Partial Differential Scattering Cross Section d2σ
dΩdEf

Most neutron spectroscopic techniques can be reduced to a measurement of what is called

the partial differential scattering cross section, or d2σ/dΩdEf , as a function of the neutron

energy transfer h̄ω and the neutron momentum transfer h̄Q.1 The quantity Q is known as

the scattering vector and has units of inverse length. In the scattering process between the

neutron and the sample the total momentum and energy of the system are conserved, i. e.

h̄Q = h̄(ki − kf ), (3)

h̄ω = Ei − Ef = ∆E. (4)

Hence the energy or momentum lost (or gained) by the neutron when it scatters from a

sample is gained (or lost) by the sample. In the previous equation, the quantities ki and kf

refer to the initial and final neutron wave vector, respectively, and point in the direction of

the incident and final (scattered) neutron beam. The relationship between ki, kf , and Q

can be represented by the scattering triangle shown in Fig. 1. The magnitude of the neutron

wave vector k is 2π/λ and is related to the neutron energy via

E =
(h̄k)2

2m
= 2.072k2[meV · Å2], (5)

From this last equation, one can obtain the second equation in Fig. 1, which relates the

energy transfer to the magnitude of the initial and final wave vectors. The angle between ki

and kf is commonly denoted by 2θ, and represents the total angle through which a neutron

is scattered by the sample. Note that the convention followed in this summer school is such

that the energy transfer h̄ω is positive when Ei > Ef , i. e. when the neutron loses energy to

the sample during the scattering process. This convention varies among neutron scattering

facilities.

The partial differential scattering cross section is defined as the total number of neutrons

scattered per second by the sample into a unit of solid angle dΩ in a given direction, having

final energies E that lie between Ef and Ef + dEf . It is normalized by the neutron flux

incident on the sample Φ0 (measured in neutrons/sec/cm
2) so that it has units of area/(solid

angle)/energy. If one integrates the partial differential scattering cross section over all solid

angles (= 4π steradians), and all final energies (0 ≤ Ef ≤ ∞), one obtains the total number
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FIG. 1: Scattering triangle. The incident neutron is scattered through an angle 2θ. The scattering

vector, Q, is given by the vector relationship Q = ki − kf .

of neutrons scattered out of the beam per second by the sample. (This assumes that the

absorption of neutrons by the sample, which can often occur, is negligible.) This is known

as the total scattering cross section σ, which has units of area. Thus σ represents the

scattering strength of the sample, and can be viewed as an unnormalized probability that

an incident neutron will be scattered. If one compares the value of σ for hydrogen with that

of aluminum, it will be clear that different elements can have enormously different scattering

strengths.

Question: The scattering cross section for x-rays is a strong and monotonically

increasing function of atomic number Z. This is because x-rays scatter from the

electrons of an atom, which grows with increasing Z. Neutrons, by contrast, scatter

from the atomic nucleus via short-range nuclear forces. If you plot σ for neutrons

versus Z, do you see any trend? In what ways might this be advantageous? (Values

for σ can be obtained from the NCNR Summer School webpage under “Course

Materials,” or at http://www.ncnr.nist.gov/resources/n-lengths/.)

It is instructive to consider the relative sizes of σ and d2σ/dΩdEf . Clearly σ, which

represents the total number of neutrons scattered per second by the sample, is many orders

of magnitude larger than d2σ/dΩdEf , which is an analyzed quantity both in energy and

direction. On the other hand, the partial differential scattering cross section provides a

correspondingly greater amount of information because it contains all of the details of the

individual and collective motions of the atoms, molecules, and/or any atomic magnetic

moments that comprise the sample. The differential cross section dσ/dΩ, which is what is

measured in a diffraction experiment, lies between σ and d2σ/dΩdEf in size. As dσ/dΩ is
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dominated by the elastically scattered (h̄ω = 0)neutron component, it represents the time-

averaged (equilibrium) positions of all nuclei in the sample and is used to determine the

crystal structure.

The partial differential scattering cross section d2σ/dΩdEf can be cast into a useful

mathematical form via the formalism outlined at the end of the neutron scattering primer

written by Roger Pynn2 (which the summer student is presumed to have read). With a

small deviation from the notation used by Pynn we can write the partial differential cross

section for a system composed of a single atomic element as

d2σ

dΩdEf

=
1

4π

(

kf
ki

)

[σcohScoh(Q, ω) + σincSinc(Q, ω)] , (6)

where S(Q, ω) is the same exact quantity as I(Q, ε) used by Pynn to express Van Hove’s

scattering law. The subscripts coh and inc refer to the coherent and incoherent parts of the

scattering, which pertain to the collective or individual motions of the atoms, respectively,

as described on page 9 of Pynn’s primer. Whenever spatial correlations between many

scatterers are of interest, only the coherent term need be considered. By contrast, whenever

spatial correlations between an atom and itself at a time t later are of interest, such as in

studies of diffusion, only the incoherent term is relevant.

The scattering function Scoh(Q, ω) contains a double sum over pairs of nuclei as shown

in Eq. 3 on page 28 of Pynn’s primer.2 Each term in this sum represents the correlation

between the position of one nucleus at a time t = 0 with that of another nucleus at an

arbitrary time t later. These correlations are important for systems in which the nuclei are

strongly coupled via some type of interaction, but less so when this coupling is weak. In

either case Scoh(Q, ω) provides a measure of the strength of this coupling, and hence of the

resulting collective motions. It is therefore extremely useful, for example, in mapping out

the dispersion relations of lattice vibrations, which reflect how the energy h̄ω of a lattice

vibration changes at different Q positions in a solid. For the remainder of this discussion,

we will drop the subscript coh with the understanding that we are referring to the coherent

part of the scattering function.

The scattering function S(Q, ω) can be simply related to the imaginary part of the

dynamical susceptibility according to
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S(Q, ω) =
h̄

π

(

1

eh̄ω/kBT − 1
+ 1

)

χ′′(Q, ω), (7)

where kB = 1.381× 10
−23 Joules/K is Boltzmann’s constant (note: h̄/kB = 11.60 K/meV is

a handy conversion factor). This is a very important equation since it shows that S(Q, ω),

which is readily obtained from the experimentally measured partial differential scattering

cross section via Eq. (6), is also related to a quantity that is easily calculated by theorists,

χ′′(Q, ω). The dynamical susceptibility is a measure of how the system responds when

it is “kicked.” χ′′(Q, ω) refers to the imaginary part of this quantity, which is related to

how energy is dissipated by the system. Therefore a measurement of the partial differential

scattering cross section via neutron spectroscopy allows for a direct test of theoretical models.

By recording the scatterered neutron intensity as a function of energy transfer h̄ω and

momentum transfer h̄Q and removing all instrumental effects, one obtains S(Q, ω), which

contains all of the dynamical information about the system.

With the exception of the neutron spin-echo (NSE) technique, all other neutron spectro-

scopic methods measure d2σ/dΩdEf using a neutron detector to count the number of neu-

trons scattered per unit time from a sample as a function of the energy transfer ∆E = h̄ω

and the momentum transfer h̄Q. To do this requires that one knows the energy and wave

vector of the neutron before (Ei,ki) and after (Ef ,kf ) it scatters from the sample. There

are many ways of doing this, and most will be illustrated by the different experiments in this

summer school. As will be seen, each method has its own particular advantages and limi-

tations depending on the range of energy transfers (time scales) and momentum transfers

(length scales) one wishes to study.

C. The Spin-Spin Correlation Function < SR(t) · SR′ (0) >

While neutrons interact with atomic nuclei through nuclear interactions, they can also

interact with magnetic moments resulting from unpaired electron spins. These magnetic in-

teractions exist because neutrons also possess a magnetic moment. In other words, neutrons

behave like tiny magnets. The intensity of neutrons scattered from the magnetic moments

in a solid is proportional to a quantity known as the spin-spin correlation function:1

d2σ

dΩdEf

= r20
kf
ki
|
g

2
F (Q)|2

∑

αβ

(δαβ − Q̂αQ̂β)
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FIG. 2: A schematic diagram showing the relationship between the partial differential neutron

scattering cross section and the spin-spin correlation function. The relaxation rate Γ represents

the half-width at half-maximum (HWHM) in energy of S(Q,ω) and is inversely proportional to

the lifetime of the excitation, τ . The linewidth κ represents the HWHM in momentum transfer of

S(Q,ω) and is inversely proportional to the correlation length, or spatial extent of the excitation,

ξ.

×
1

2πh̄

∫

dt eiωt
1

N

∑

RR′

< Sα
R(t)S

β
R′(0) > e−iQ·(R−R′) (8)

where r0 = −0.54 · 10−12 cm, g is the gyromagnetic ratio, F (Q) is the magnetic form-

factor and N is the number of unit cells in the solid. Basically the partial differential

scattering cross section d2σ/dΩdEf is the Fourier transform in space and time of the spin-

spin correlation function < SR(t)·SR′ (0) >. Thus, neutron elastic (h̄ω = 0) scattering probes

static (time invariant) ordered moments, whereas neutron inelastic (h̄ω 6= 0) scattering

probes fluctuating (dynamic) moments.

While this equation appears formidable, Fig. 2 provides a simple schematic diagram to

help illuminate the relationship between the measured magnetic neutron scattering cross
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section and the time-dependent spin-spin correlation function. The spatial dependence of

the spin-spin correlations in a magnetic material can be determined from the experimentally

measuredQ-dependence of S(Q, ω). For example, if S(Q, ω) corresponds to a sharply peaked

distribution of scattered neutrons in Q such that the intrinsic width of the peak cannot be

resolved by the spectrometer (we call this a Q-resolution limited peak), then the spatial

correlations between spins are said to be of long-range. (Note that this does not mean that

the correlations are infinite!) If, however, S(Q, ω) is broader than the Q-resolution limit

of the spectrometer, then the correlations are said to be of short-range and characterized

by a correlation length ξ ∼ 1/κ, where κ is the half-width at half-maximum (HWHM)

of the peak in Q. An analogous argument can be made for the energy distribution of

the scattered neutrons. If S(Q, ω) corresponds to an h̄ω-resolution limited peak, then the

temporal spin-spin correlations are said to be static, at least on the time-scales accessible

to the spectrometer. If, on the other hand, S(Q, ω) is broader than the instrumental h̄ω-

resolution, then the spin-spin correlations are short-lived, meaning that the excitation decays

after a lifetime given by τ ∼ 1/Γ, where Γ is HWHM of the peak in h̄ω.

II. TRIPLE-AXIS SPECTROSCOPY

A. Introduction to the Triple-Axis Spectrometer

The triple-axis spectrometer (TAS) is an extremely versatile instrument that is used

primarily to study the collective motions of atoms and their magnetic moments in single

crystal samples. The first TAS system was used to make the first experimental demonstration

of phonon and magnon dispersion curves (in aluminum and magnetite) in the mid 1950’s.3

The instrument derives its name from the fact that neutrons interact with three crystals on

the way from reactor to detector, where each crystal is able to rotate independently about

a vertical axis passing through its center. This is shown schematically in Fig. 3. The first

crystal is called the monochromator, as it selects a single monochromatic component from

the white neutron beam emanating from the reactor. The second crystal is the sample itself

(although it may be either a single crystal or a powder). The third crystal is called the

analyzer, as it is used to analyze the energy spectrum of the neutron beam that scatters

from the sample. The last primary element of the instrument is, of course, the neutron
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FIG. 3: Schematic scattering diagram for a conventional triple-axis spectrometer, which measures

the rate of scattering events at a single value of (Q, h̄ω) one neutron at a time.

detector.

In a triple-axis spectrometer, the initial and final neutron energies are determined by

exploiting the process of Bragg diffraction from the monochromator and analyzer. This is

done by rotating the crystals about their respective vertical axes such that a specific set of

atomic Bragg planes, having a well-defined interplanar spacing d, makes an angle θ, known

as the Bragg angle, with respect to the initial (or scattered) beam direction. When this is

done, only neutrons with wavelengths that satisfy the Bragg condition (see pages 9-11 of

Pynn’s primer)

nλ = 2d sin θ, (9)

where n is an integer greater than zero, will Bragg scatter from each crystal and proceed

successfully to the next element of the spectrometer.

Question: Because the variable n in Bragg’s law can be any integer greater than

zero, more than one monochromatic component can be present in the neutron beam

diffracted by either monochromator or analyzer. List the possible wavelengths

of these other ”higher order” components in terms of the fundamental (n = 1)

wavelength λ. How might their presence affect the experimental data?

To remove these extra and unwanted monochromatic components from a Bragg diffracted
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beam, while preserving the neutron flux at the desired fundamental (n = 1) wavelength λ, it

is common practice to place a filter composed of some solid material in the path of the beam.

The choice of material depends on the primary wavelength λ. For thermal neutrons, a special

form of graphite (pure carbon) known as highly-oriented pyrolytic graphite (HOPG or just

PG) is often used. Graphite has a layered structure in which the crystalline [001] direction,

or c-axis, is normal to the layers. HOPG behaves like a crystal of graphite in which the

various graphite layers have all been randomly spun about the c-axis. Therefore HOPG can

be viewed as a single-crystal along [001] and a powder along the two orthogonal directions.

It exhibits very good transmission at certain neutron energies including 13.7, 14.7, 30.5, and

41meV. Neutrons of other energies are preferentially (though not completely) scattered out

of the beam, thereby minimizing the chance they will enter the detector and contribute to

the background.

For cold neutrons, such as those used on the SPINS spectrometer, a polycrystalline block

of beryllium (Be) or beryllium oxide (BeO) is used as a wavelength filter. The requirement

for this filter to work is that there be enough tiny crystallites to span all angular orientations,

i.e. all values of the Bragg angle θ, so that all unwanted neutrons are Bragg scattered out

of the neutron beam.

Question: (1) Consider a white (polychromatic) beam incident on a polycrys-

talline Be filter. What happens to those neutrons with wavelengths λ > 2dmax,

where dmax = 1.98 Å is the largest interplanar d spacing available in beryllium?

What happens to those neutrons with λ ≤ 2dmax? Make a simple sketch of trans-

mission versus energy for this filter.

(2) What are the most important material properties to consider when designing

this type of neutron ”low-pass” filters?

As can be seen from Fig. 3, when the incident neutron beam strikes the monochromator

it is scattered through an angle 2θm from its initial direction. This is often referred to as the

monochromator scattering angle. In order for the resulting monochromatic beam to hit the

sample, it is necessary to rotate the subsequent elements (sample, analyzer, and detector)

of the spectrometer about the monochromator axis through an angle of 2θm. The same

situation applies to the sample and analyzer, i. e. associated with each crystal is a Bragg
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angle θ and a scattering angle 2θ. Hence each axis of the triple-axis spectrometer is actually

composed of two motors, one to control the crystal Bragg angle θ and the other to rotate the

subsequent (downstream) elements of the instrument by the appropriate scattering angle 2θ.

While there are many different motors involved in the operation of a triple-axis spectrometer,

such as those that control mechanical slits that limit the horizontal and vertical extent of

the neutron beam, the primary instrument motors are the six that control the values of θ

and 2θ for the monochromator, sample, and analyzer.

The material most commonly used as monochromator and analyzer in a TAS system

is HOPG. Its utility lies in its very high reflectivity for neutrons over a wide range of

energy, its negligible incoherent scattering and absorption cross sections, and its low atomic

number (so that scattering by gamma rays is small). The (002) Bragg planes of HOPG

have an interplanar d spacing of 3.354 Å. Other materials that also find use in triple-axis

spectroscopy are silicon, germanium, and copper.

Question: Calculate the monochromator Bragg and scattering angles required to

obtain a neutron beam having initial energies Ei = 14.7meV, and 100meV using

the (002) reflection of HOPG. The (220) reflection of copper has a d spacing of

1.278 Å. Would this be a better choice of monochromator in either case? Why?

During the interaction with the sample neutrons can lose or gain energy and thus can

emerge with an energy Ef 6= Ei. The resulting energy transfer can be computed according

to

h̄ω = Ei − Ef =
h2

8m

(

1

d2m sin
2 θm

−
1

d2a sin
2 θa

)

, (10)

where dm and da are the d-spacings of the monochromating and analyzing crystals, respec-

tively. If the analyzer is set to select the same energy as that of the incident beam (Ei = Ef ),

then h̄ω = 0 and the scattering is said to be elastic. If not, one detects inelastic scattering

events.

Choosing the momentum transfer Q between neutron and sample is achieved by orienting

the incident and final neutron wave vectors with respect to each other to obtain the desired

vector difference (ki − kf ). Unlike the case of the monochromator and analyzer crystals,
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the Bragg and scattering angles for the sample need not be related by a simple factor of 2.

The name 2θ comes from the fact that 2θ = 2 × θ for elastic Bragg scattering. But when

measuring inelastic scattering this relation no longer holds. Hence the notation 2θ (which

is quite common) can be misleading for the novice scatterer. With this warning in mind,

we can express the magnitude of the momentum transfer in terms of the variables in the

scattering triangle diagram shown in Figure 1 as

Q =
√

k2i + k2f − 2kikf cos 2θ. (11)

Note that the momentum transfer does not depend on the sample Bragg angle θ, but only

on the sample scattering angle. The purpose of the Bragg angle is to allow the crystalline

axes of the sample (if it happens to be a single crystal) to be aligned in specific ways with

respect to the scattering vector Q. This allows one to probe the geometry of the dynamics

in question along different symmetry directions. The utility of the sample Bragg angle

becomes moot, however, in the case of a powder sample, which is composed of many tiny

and randomly-oriented single crystals.

Question: What is the maximum momentum transfer one can obtain in the case

of elastic scattering, i.e. |ki| = |kf |? What is the minimum? Why might these

two configurations be problematic from an experimental point of view?

By stepping either the analyzer Bragg angles θa and 2θa, or the monochromator Bragg

angles θm and 2θm, by computer in small angular increments while maintaining the 1:2 ratio

in step size, one can effectively “scan” the energy transfer h̄ω. This is often done while

keeping the momentum transfer Q constant, and such scans are known as constant-Q scans.

An alternative to the constant-Q scan is the constant-E scan in which the energy transfer is

held constant while one varies the momentum transfer Q. These two scans are fundamental

to the triple-axis method and are commonly used to map out the dispersion relations for

both phonons and magnons in condensed matter systems.

In the case of a constant-Q scan, one has the choice of fixing the incident energy and

scanning final energy, or vice-versa; this is done by fixing the Bragg angles of the monochro-

mator and varying those of the analyzer, or the other way around. As a rule, it is best not
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FIG. 4: Overview of the SPINS spectrometer. The arrows show the path of the neutron beam

during a scattering experiment. M, S, A, and D stand for the monochromator, sample, analyzer,

and detector.

to vary both because one needs to place a wavelength filter in the path of either the incident

beam (before the sample) or the scattered beam (after the sample) in order to remove the

unwanted “higher order” harmonic content of the Bragg diffracted neutron beam (remember

the effect of the integer n in Bragg’s law). If the analyzer angles are fixed and one varies

θm and 2θm, then the result is an Ef -fixed configuration. Doing the opposite results in an

Ei-fixed configuration. Both methods yield data that contain the same physics. However

data obtained from these two methods must be corrected for different instrumental effects.

Deciding which method to choose depends largely on the specific problem being studied.

B. The NCNR Spin Polarized Inelastic Neutron Scattering (SPINS) Spectrometer

SPINS is a cold-neutron, triple-axis spectrometer installed on the NCNR neutron guide

NG5. Fig. 4 shows an overview of the SPINS spectrometer and the schematics of the neutron

path. The range of available incident neutron energies extends from 2.3 to 14meV. The

monochromator consists of 5 blades of PG crystals that can vertically focus the incoming

neutron flux onto a sample that is smaller than the height of the beam. The analyzer

consists of 11 blades of PG crystals that are positioned vertically in a row and can be
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FIG. 5: Schematic scattering diagram of the horizontally focusing analyzer mode using a multi-

blade analyzer on a triple-axis spectrometer. This mode is able to collect data over a broad range

in momentum transfer while simultaneously maintaining good energy resolution.
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FIG. 6: Schematic scattering diagram of the multiplexing mode using a position sensitive dector

(PSD) on a triple-axis spectrometer. This mode is able to measure scattering events at different

values of (Q, h̄ω) simultaneously.

rotated individually. SPINS is designed to operate in a number of different configurations

or modes to take advantage of the multi-crystal analyzer. The most common are the (1)

conventional triple-axis mode, (2) horizontally focusing analyzer mode, and (3) multiplexing

mode. Since many components of the SPINS instrument can be changed as needed, other

modes are possible but will not be described here. For instance, a spin-polarized neutron

scattering mode is also available as an option. We discuss the three primary modes below.

(1) The conventional triple-axis mode is the one most frequently used on SPINS and has

been discussed previously; it is shown in Fig. 3. This mode can be set up on SPINS by
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using just a few of the central analyzer blades (typically three), which are aligned to be flat

with respect to each other. A single 3He gas tube is then used for neutron detection, and

beam collimators, devices that are used to define the precision of the neutron wave vectors

ki and kf by limiting the horizontal divergence of the neutron beam, are placed along the

beam path, typically both before and after the sample.

(2) The horizontally focusing analyzer mode is shown schematically in Figure 5. It is

used to focus neutrons scattered over a wide range of scattering angle (i. e. a large range of

Q) into a single tube detector. It has the effect of relaxing the instrumental Q-resolution

while maintaining good energy resolution. As a result, the detected neutron intensity will

increase in rough proportion to the number of focusing blades. This mode is appropriate

to use whenever the scattering features to be measured are broad in momentum space, i. e.

whenever the spatial correlations of interest are of short-range. Ideally the blades must be

located along the arc of a circle that passes through the positions of the sample and detector

so that the Bragg angles for all the blades are equal. In practice, however, one can achieve

an approximate focusing condition by aligning the row of analyzer blades tangentially to the

relevant arc and maintaining a constant angle of incidence for each blade. The momentum

resolution can be adjusted by varying the number of focusing blades used.

(3) In the multiplexing mode a large area, position sensitive detector (PSD) is used to-

gether with the multi-crystal analyzer. In the most common setup, shown schematically in

Figure 6, the 11 analyzer blades are aligned in such a way to scatter neutrons into equally-

spaced columns on the PSD. If the blade arrangement is nearly flat as in Figure 6, then

each blade will correspond to a different Bragg angle and thus a different energy. Therefore,

the neutrons scattered from each blade will correspond to different momentum and differ-

ent energy transfers. The positional sensitivity of the PSD is sufficient to discriminate this

information efficiently. This mode is a very efficient method for data collection when the

momentum dependence of the excitation of interest is two-dimensional or less. Typically

a calibration run should be performed for a given setup using an incoherent scatterer and

then used as a reference for energy and intensity calibrations. In general a variety of cre-

ative combinations of the analyzer-PSD setups are possible depending on the needs of the

experiment.

The NCNR has several neutron scattering spectrometers that provide diverse experimen-

tal capabilities to the scientific user community. Whenever a neutron scattering experiment
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TABLE I: This chart compares the abilities of the different NCNR spectrometers in terms of the

needs for this particular experiment.

Issues SPINS BT7/9 DCS HFBS NSE FANS

|ΘCW | ≈ 88 K corresponds to J ≈ 1 meV © × © × × ×

Measure S(Q,ω) at well-defined Q(hkl) © © 4 × × ×

Measure diffraction with good resolution © 4 × × × ×

is planned, it is essential that the user consider all of the experimental needs and select the

most appropriate instrument. Table I summarizes the most important reasons why SPINS,

which is a cold neutron triple-axis spectrometer, is the best instrument at the NCNR for

the study of CdCr2O4. The circles in the table indicate a good match between a specific

experimental need and instrument ability; the triangles indicate a situation that is less than

optimal, and the crosses indicate a bad match. For example, as described in the abstract,

the compound CdCr2O4 exhibits a Curie-Weiss temperature of 88K, which corresponds to

an energy scale of order 1meV. Thus one should choose a spectrometer that has a dynamic

range of at least 1meV and that can provide an energy resolution that is significantly better

than this. The only two choices are SPINS and DCS. The thermal triple-axis spectrometers

BT7 and BT9 typically provide energy resolutions of order 1meV or more; thus the excita-

tions of interest would be impossible to resolve. By contrast, the High-Flux Backscattering

Spectrometer (HFBS) provides an energy resolution of less than 1µeV that is far too good,

plus it can only achieve a dynamic range of order ±44µeV, which is far too small to study

excitations at 1meV. An important, additional advantage of SPINS is that experiments that

require many different experimental configurations, such as those tailored to elastic versus

inelastic scattering, high versus low Q-resolution, and high versus low energy resolution, can

be performed in series on the same instrument.
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III. SPIN-SPIN CORRELATIONS IN GEOMETRICALLY FRUSTRATED ANTI-

FERROMAGNETIC SPINEL CDCR2O4

A. Introduction to the Magnetic Phases in Condensed Matter

The basic building block of all materials is the atom, which consists of a nucleus and one

or more electrons. While the nucleus accounts for more than 99.9% of the total atomic mass,

it is the electrons that determine the majority of all material properties. Electrons possess

two fundamentally important characteristics: an electric charge and a magnetic moment.

One electron carries a unit charge of 1.602× 10−19 Coulombs and a unit magnetic moment

of 1
2
h̄. The magnetic moment is often called the spin because its representation resembles

that of angular momentum. However, it is an intrinsic quantum mechanical property and

has nothing to do with the physical spinning of electrons. Spin is a vector quantity just

like angular momentum and the associated magnetic field can either point up (↑) or down

(↓) with respect to an arbitrary axis. When electrons are placed on atomic orbitals, their

associated magnetic fields will often cancel by forming pairs of “up” and “down” spins. In

certain materials, however, they do not completely cancel because the number of electrons

is odd; in other cases they may even add together due to split internal energy levels. As

a result, an atom or ion may have a non-zero magnetic moment, which can be detected

externally. Such materials are magnetic.

Interestingly, neutrons also have a spin (S = 1
2
h̄) even though they are charge neutral;

this is because the neutron is actually a composite particle composed of oppositely charged

Up and Down quarks. It is for this reason that neutrons are able to interact with magnetic

moments in materials. Contrary to the scattering “strength” from a nonmagnetic nucleus,

which is a scalar property, the neutron scattering strength from a spin is a vector property.

Therefore, orientational periodicity matters as much as positional periodicity for magnetic

neutron scattering. If there are no spatial correlations between spins, either orientational or

positional, then the magnetic neutron scattering will essentially be incoherent (i. e. it will

have little to no Q dependence). This is often the case for nuclear spins (remember that

nuclei are composed of S = 1
2
h̄ neutrons and protons) because they are strongly localized to

each nucleus. On the other hand, neighboring electronic spins are often spatially correlated

via the overlap between the electronic orbits and exchange interactions, which results in
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FIG. 7: (a) Schematic illustrations of disordered spin states. (b) Examples of simple magnetic

ordering patterns. (c) Classical representation of a spin wave excitation in a one-dimensional

ferromagnet.

well-defined orientational periodicity.

Once the positional periodicity of the magnetic ions is determined from the crystal struc-

ture, there are two things we may wish to measure: the patterns of spin orientations and

the strength of the interactions that can stabilize such patterns. The pattern of spin ori-

entations, often called the magnetic structure, is one of the most often studied subjects of

neutron diffraction. Figure 7 (a) shows schematics of disordered magnetic states at two

extremes. If the temperature is very high and the thermal energy becomes greater than the

magnetic energy, each spin will fluctuate rapidly without any observable correlation with the

neighboring spins. The net magnetic moment for each spin will be zero on time scales longer

than that of the fluctuations. Such a state is called paramagnetic, and it is analogous to a

gas where the periodicity of atomic positions is lost due to thermal fluctuations. When the

temperature is lowered the thermal fluctuations weaken, and each magnetic ion may exhibit

a non-zero net moment. In a spin glass state, there is no clear orientational periodicity even

after the thermal fluctuations are suppressed. It is analogous to regular glass, in which the
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atomic positions are frozen in a disordered arrangement. Quite often, however, short-range

correlations between nearby magnetic ions do exist, and the absence of long-range order is

due mostly to extrinsic reasons. On the other hand, the majority of magnetic materials

will establish long-range periodicity when the temperature is low enough. While there is a

great diversity of known magnetic structures, most of them can be classified into the classes

shown in Figure 7 (b). The simplest and contrasting cases are those of a ferromagnet and

an antiferromagnet. In a ferromagnet, the magnetic energy is minimized when the spins are

oriented parallel to each other. As a result, the material may become a strong magnet in

the presence of an externally applied magnetic field. In an antiferromagnet, the magnetic

energy is minimized when pairs of nearby spins are oriented antiparallel to each other. This

situation suggests that the signs of the magnetic interactions in an antiferromagnet are op-

posite those in an ferromagnet. Additional interactions, for example between next-nearest

neighbor spins, may induce non-collinear spin structures such as those observed in spiral

magnets.

Magnetic phase transition temperatures are determined by many factors such as the

strength of the exchange interactions between magnetic ions, how the ions are arranged ge-

ometrically, and the magnitude of the ordered spins. The first step towards understanding

the nature of a particular magnetic transition is usually to measure the bulk magnetic sus-

ceptibility, which is defined as χ = ∂M/∂H. Here, H and M are the applied magnetic field

and the magnetization of a material, respectively. The magnetic susceptibility represents the

degree of magnetization of a material in response to an external magnetic field. In the high

temperature, paramagnetic phase, the susceptibility increases as the system is cooled down

and thermal fluctuations are reduced. In ferromagnets, the susceptibility diverges at the

transition temperature, which is called TC or the Curie temperature (see Figure 8 (a)). In

antiferromagnets, the susceptibility exhibits a peak at the transition temperature, which is

called TN or the Néel temperature (see Figure 8 (b)). The strength of the dominant exchange

interaction can be estimated from a plot of the inverse susceptibility versus temperature T .

In both ferromagnets and antiferromagnets such a plot will produce a straight line at high

temperatures that extrapolates to an intercept at T > 0 and T < 0, respectively, which is

called ΘCW or the Curie-Weiss temperature. ΘCW provides a good measure of the major

ferromagnetic (or antiferromagnetic) exchange strength, and typically TC (or TN) and |ΘCW |

are comparable to each other.
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FIG. 8: Typical temperature dependence of the magnetic susceptibility χ = ∂M/∂H and 1/χ

for (a) ferromagnets and (b) antiferromagnets. H and M are the applied magnetic field and

magnetization of the material, respectively.

B. Dynamical Aspects of Magnetic Correlations

The magnetic ground state of a system is that state where the magnetic energy is mini-

mized. Therefore, the magnetic structure of the ground state is determined by the magnetic

Hamiltonian H that describes the magnetic energy of the system. The simplest but most

useful magnetic Hamiltonian, which includes only isotropic, pairwise interactions, may be

written as

H = −
1

2

∑

i6=j

JijSi · Sj, (12)

where Si and Sj are the magnetic moments of the ith and the jth ions, respectively, and Jij

is the isotropic Heisenberg exchange constant between them. In this Hamiltonian, the signs

and strengths of J determine the magnetic structure: J > 0 for ferromagnets and J < 0 for

21



antiferromagnets.

While the overall signs of the major exchange interactions may be deduced from the ob-

served magnetic structures, the exchange strengths can be quantified by measuring the mo-

mentum dependence of the spin wave excitation spectra. These exchange interactions work

as restoring forces when the spins are excited and deviate from their ordered directions. This

situation is analogous to the thermal oscillations of atoms about their equilibrium positions,

which are subject to the inter-atomic restoring forces that stabilize the crystal structure. In

ordered magnets with isotropic spins, the fluctuations of each spin will propagate through

the lattice and produce wave-like excitations of non-zero energy. Although spins and their

fluctuations are quantized quantities, most of the time their fluctuations can be approx-

imately understood in terms of classical waves. A classical illustration of a propagating

ferromagnetic spin wave is shown in Figure 7 (c). Since spin waves do not decay with time

at low temperature (to a first approximation), the resulting energy spectra (i. e. the scat-

tered distribution of neutrons in energy) should resemble delta functions that are broadened

only by the non-zero energy resolution of the spectrometer.

The dynamics of magnetism are not limited to dispersive wave-like excitations, but also

include so-called “localized” excitations. If the fluctuations of magnetic ions are somehow

impeded from freely propagating through the lattice, they may be confined (localized) within

a short distance and/or decay quickly. There also are single-ion excitations, such as crystal

field transitions, or singlet-to-triplet excitations, which will show little or no momentum

dependence. The interactions between the neutrons and the magnetic moments can either

create or annihilate such excitations and their cross sections, as illustrated in Figure 2, can

reveal the spatial and temporal nature of the spin-spin correlations. For this reason, neutron

spectroscopy is one of the most powerful techniques with which scientists can quantitatively

investigate a diverse variety of magnetic excitations and interactions in condensed matter.

C. Geometrically Frustrated Magnets

In some magnetic materials, magnetic order does not appear even when the system is

cooled down far below temperatures corresponding to the major exchange strength, i. e.

|ΘCW |. In this experiment we are particularly interested in the case where the crystal

structure is responsible for the suppression of the magnetic phase transition; this is often
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FIG. 9: (a) Three Ising spins on a triangle cannot simultaneously satisfy the antiferromagnetic cor-

relations with all neighboring spins. (b) Spinel B sites form a corner-sharing network of tetrahedra,

which consists of many edge-sharing triangles. This is often called a pyrochlore lattice.

called geometrical frustration. As the simplest example, consider a case where three spins

with antiferromagnetic interactions are placed on an equilateral triangle as shown in Figure

9 (a). Let us assume that only two spin orientations are allowed, either up or down. (Such

spins are called Ising spins.) After placing the first two spins antiparallel to each other, we

see that the third spin cannot simultaneously be antiparallel to the two other spins. The

total magnetic energy will be the same whether the third spin is up or down. The third spin

is often said to be frustrated. In fact, it is not just the third spin but the entire three-spin

system that is frustrated, and there is more than one lowest energy state possible for the

system. Such topologically-induced multiply (usually infinitely) degenerate ground states

that cause the system to fail to order are characteristic of geometrically frustrated magnets.

One of the most well known examples is realized in the case of corner-sharing networks of

tetrahedra, which are found in pyrochlore (A2B2O7) or spinel (AB2O4) compounds. (See

Figure 9 (b).) Due to the intricate network built up with an infinite number of triangles,

antiferromagnetic order cannot be stabilized even when any arbitrary spin orientation is

allowed.

The majority of geometrically frustrated magnets will eventually order when the tem-

perature is lowered enough, and is often the result of structural distortions, which provide

pathways to overcome the frustration by reducing the crystal symmetry. The frustration fac-

tor f = |ΘCW |/TN is usually larger than 10 for most frustrated magnets. In the temperature

range between TN and |ΘCW |, the system is in a supercooled state where a strong tendency

to establish long-range magnetic order is held in check not by thermal fluctuations but rather
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by the geometrical frustration. This suggests that each ion possesses a non-zero magnetic

moment and interacts strongly with neighboring ions, unlike thermally disordered param-

agnets. Therefore, via neutron scattering one may expect to observe short-range magnetic

correlations, both in space and in time, and fluctuations between the multiply degenerate

ground states.

Question: Consider the case of a triangular lattice with isotropic Heisenberg spins.

If the nearest-neighbor exchange interaction is antiferromagnetic, is geometrical

frustration expected or not?

D. Geometrical Frustration and Phase Transitions in Chromate Spinels

Spinels with Cr3+ ions on the B sites are good examples with which to study geometri-

cal frustration.4–7 This is because a Cr3+ ion has three electrons in the 3d wave function.

Under the 6-coordinated oxygen environment found in spinels, these three electrons will

equally distribute among the dxy, dyz, and dzx orbitals, which promotes an isotropic cubic

environment. Therefore, the electronic orbitals will have no effect in distorting the cubic

symmetry. By comparison, a V3+ ion has two electrons in the 3d wave function, which

leaves freedom to selectively occupy two out of the three available orbitals. This leads to

an orbitally driven structural phase transition.8 The absence of orbital degrees of freedom

in the chromate spinels is intriguing in two aspects. One is that its frustration factor is

maximized because orbital effects will not help the system to order, and the other is that

the observed structural transition is ascribed to a reduction of the magnetic energy alone.

ZnCr2O4 has a Curie-Weiss temperature |ΘCW | ≈ 390K, while its magnetic transition

occurs at a temperature as low as TN = 12.5 K.4 The estimated frustration factor f ≈

31, demonstrating a large degree of geometrical frustration. This frustration is lifted via a

cubic-to-tetragonal lattice distortion (c < a = b) that occurs simultaneously with the mag-

netic transition. The contraction along the c-axis conveniently explains the reduction of the

magnetic energy because it enables the system to satisfy four out of the six antiferromag-

netic correlations.6 Experimentally, however, the magnetic transition occurs with multiple

ordering wave vectors, which suggests that there is more than one magnetic structure in the
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FIG. 10: (a) Bulk susceptibility χ of CdCr2O4as a function of T . The inset shows a linear fit to 1/χ.

(b) T -dependences of the normalized neutron scattering intensity measured at the magnetic peaks

(blue) and of the lattice strain, ε = a−ao

ao
(red). These plots were obtained from Gaussian fits to the

data shown in (c) and (d). (c) Elastic neutron scattering data measured through incommensurate

magnetic (1,δ,0) reflections below and above TN . (d) Elastic neutron scattering data through the

nuclear (400) Bragg reflection below and above TN . (From Ref. 7)

ground state. The true ground state spin structure of ZnCr2O4 is not yet known.

In this experiment, we will investigate the closely related compound, CdCr2O4, where

the non-magnetic Zn2+ ion at the A site is replaced with Cd2+, which has a larger ionic

radius. Because the Cr3+–Cr3+ bond distance is increased by virtue of the larger Cd2+ ion,

the magnetic interactions in CdCr2O4 should be weaker than those in ZnCr2O4. Indeed,

|ΘCW | = 88K for CdCr2O4, which corresponds to JCr−Cr ≈ 1meV, which is much lower

than the corresponding value for ZnCr2O4. (See Figure 10 (a).) An antiferromagnetic

phase transition is observed at TN = 7.8K, while a structural phase transition occurs at the

same temperature. (See Figure 10 (b).) Quite surprisingly, however, the cubic-to-tetragonal

distortion (c > a = b) occurs along the direction opposite to the one observed in ZnCr2O4,
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and the magnetic periodicity is incommensurate with respect to the lattice with a single

ordering wave vector, Q = (1,δ,0) where δ ≈ 0.09. (See Figure 10 (c)-(d).) Such diverse

behavior exhibited by the different magnetic transitions in geometrically frustrated chromate

spinels demonstrates the complexity of the antiferromagnetic interactions in networks of

corner-sharing tetrahedra.

IV. EXPERIMENT AND ANALYSIS

A. Experimental Planning

The goal of this experiment is to understand the difference between the magnetic correla-

tions in the geometrically frustrated and long-range ordered magnetic phases of the chromate

spinels. We chose CdCr2O4 as a model system to study. While the level of frustration is less

than that of the related compound ZnCr2O4, we prefer CdCr2O4 because it has a well-defined

magnetic order that is described by a single ordering wave vector. A notorious problem with

samples that contain cadmium is that cadmium has a prohibitively high neutron absorption

cross section. Fortunately, the high absorption is ascribed only to 113Cd, which has a 12.22

% natural abundance. We therefore used single crystal samples enriched with 114Cd for this

neutron scattering experiment.

Question: The spinel belongs to a class of lattice called face-centered cubic, in

which there are equivalent ions at each face as well as at each corner of the cubic

lattice. How many equivalent ions are there in a single face-centered cubic cell?

Are the physical environments the same or different between these ionic positions?

What does the answer to the last question suggest regarding the validity of the

face-centered cubic cell as a basic physical unit of the material?

Neutron triple-axis spectroscopy is the experimental method that we expect will best

elucidate the relevant length and time scales of the spin-spin correlations in the antiferro-

magnetic chromate spinel. When performing any scattering experiment on condensed matter

materials, it is essential to understand the concept of reciprocal space. This is because the

scattering wave vectors, which are denoted by k and which have units of inverse length, are
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equivalent to translation operations in reciprocal space. In fact, k is often referred to as the

momentum transfer because it is proportional to the momentum in wave mechanics, i. e.

p = h̄k. Let us assume that a crystal lattice is defined by linear combinations of the three

unit vectors connecting equivalent ionic positions, a, b, and c, such that r = xa+ yb+ zc.

We may further imagine this three dimensional lattice as being built from stacks of repeating

planes composed of these atomic positions; these planes are known as lattice planes. From

the three vectors a, b, and c, we can define three corresponding unit vectors in reciprocal

space using the following relations:

a∗ = 2π
b× c

a · (b× c)
, b∗ = 2π

c× a

b · (c× a)
, c∗ = 2π

a× b

c · (a× b)
. (13)

Note that the reciprocal unit vector a∗ is orthogonal to the real space vectors b and c;

similar relationships hold for the other two reciprocal space unit vectors. Just as the crystal

lattice can be generated using real space unit vectors, so too can the reciprocal lattice be

generated with the reciprocal space unit vectors, i. e. any position k in reciprocal space

can be expressed as k = ha∗ + kb∗ + lc∗. When h, k, and l are integers, the vector k

connects a set of lattice planes that are perpendicular to k. The magnitude, or norm, of the

vector, |k|, is proportional to the inverse of the spacing between the planes. This is a very

useful concept because the propagation of wave-like phenomena in solids, such as electrons,

phonons, and spin waves occurs in the form of plane waves. When one or more of h, k, and

l is an irrational number, the result is a vector that is incommensurate with respect to the

lattice.

Question: Consider an orthogonal lattice, where a, b, and c are mutually orthog-

onal axes. What are the angular relations between a∗, b∗, and c∗? How are these

directions related to the directions of a, b, and c?

The concept of reciprocal space is widely used in condensed matter physics and is applica-

ble not only to crystalline materials but also to non-crystalline samples. Mathematically, real

space and reciprocal space are related via the Fourier transformation S(k) =
∫

ρ(r)eik·rdr,

which provides a convenient route for the simple interpretation of scattering data. Since we

are studying a single crystal sample in this experiment, we will use scattering vectors ex-

pressed in three dimensions, which may be written in a short-hand notation as k = (h, k, l).
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Note that for cubic lattices, h, k, and l are interchangeable with each other.

B. Experimental Setup

Before starting an experiment at SPINS, users must decide what kind of experimental

configuration they need to use. One of the most important choices to be made concerns the

analyzer setup, which includes not only the different analyzer modes discussed previously,

but also the value of the final energy (Ef ) selected by the analyzer. While this energy

can assume many arbitrary values for triple-axis spectrometers, typical values at SPINS are

either 5.0meV or 3.7meV. These values are important because they lie just below the cutoff

energies of the low-pass Be and BeO filters, respectively. One may access more regions

of reciprocal space with higher intensity at Ef = 5.0meV, while better energy resolutions

are obtained at Ef = 3.7meV. The low-pass filters, which are inserted between the sample

and the analyzer, prevent scattered high-energy neutrons from entering the analyzer-detector

assembly and producing spurious experimental artifacts. For elastic scattering an additional

low-pass filter may be inserted between the monochromator and the sample.

Several different experimental configurations are required to carry out a series of mea-

surements of the elastic and inelastic scattering resulting from magnetic and structural tran-

sitions to spin waves and quasielastic scattering. Our main interests here are to study 1)

the difference between the spin fluctuations in the ordered magnetic phase and the geomet-

rically frustrated phase and 2) the nature of the spin-spin correlations in the geometrically

frustrated phase. As we are going to spend most of our time on the latter, the instrument

configuration will be optimized to measure the inelastic scattering cross section from scat-

terers with short-range correlations. Since the scattering intensity from such excitations is

expected to be broad in Q-space, we will choose the horizontally focusing analyzer mode.

We also choose Ef = 5.0 meV in order to achieve a moderate energy resolution, which may

provide us with a reasonable scattering intensity from a rather small sample (∼ 200mg).
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Question: (1) Let us assume that the neutron flux on the sample is constant

between Ei = 8.0meV and 3.0meV. Why should we still expect a higher scattering

intensity with Ef = 5.0meV than with Ef = 3.7meV for the same excitation below

h̄ω = 3.0 meV? (2) Aside from intensity considerations, what practical reason is

there to use Ef = 5.0meV instead of Ef = 3.7meV if the energy of the excitation

is not well known?

A single crystal sample of 114CdCr2O4 has been aligned such that the a∗ and b∗ axes, or

[1,0,0] and [0,1,0] directions lie in the horizontal scattering plane. This is often called the hk0

scattering geometry, and it is illustrated in Figure 11 (a). An alternative orientation is the

hhl scattering geometry, where the [1,1,0] and [0,0,1] directions lie in the horizontal scattering

plane. This scattering geometry is illustrated in Figure 11 (b). Also drawn in Figure 11 are

the positions of the nuclear and the magnetic Bragg peaks and the boundaries of Brillouin

zones. The sample was sealed in a He-filled aluminum can and cooled down using a liquid-

He filled cryostat. The sequence of instrumental elements along the neutron flight path

from guide to detector are: neutron guide–monochromator–80’ collimator–sample–Be filter–

radial collimator–11 horizontally focusing analyzer–detector, or G–80’–Be–RC–11HFA–D for

short. The instrumental energy resolution of this configuration is about 0.3meV FWHM

(full-width half maximum) at zero energy transfer.

Question: Brillouin zone boundaries can be drawn by sketching the surfaces that

are equidistant from one reciprocal lattice position and its neighbors. The area

enclosed by these surfaces is called the Brillouin zone. In Figure 11, why aren’t

the zone boundaries drawn around all reciprocal lattice points with integer values

of h, k, and l?

C. Data Collection and Analysis

In this session, students are advised to choose their own experimental conditions following

the guidelines below.

The first set of measurements are intended to determine the time scales of the spin excita-
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FIG. 11: Reciprocal space planes of CdCr2O4 in the (a) hk0 and (b) hhl scattering geometries.

The large blue and small red dots mark the positions of the nuclear and magnetic Bragg peaks,

respectively. The thin solid lines represent the Brillouin zone boundaries.

tions in the two different magnetic phases. How differently or similarly do the spin excitation

spectra observed in the ordered magnetic phase and in the geometrically frustrated phase

depend on energy? What are the energy scales and widths of the excitation modes found at

the lowest energy? What do the results mean in terms of the lifetimes of the observed exci-

tations? In order to answer these questions, two temperatures should be selected, one below

and the other above the phase transition temperature, TN = 7.8 K. At each temperature,

the inelastic scattering intensity will be measured as a function of energy transfer. Students

will have to choose the reciprocal lattice position at which they are going to measure the

inelastic spectrum. To make reasonable choices, students are advised to consult the results

shown in Figure 10 and the reciprocal lattice diagram shown in Figure 11.

The second set of measurements are intended to reveal the nature of the short-range spin-

spin correlations in the geometrically frustrated phase. Do the spins fluctuate randomly or

cooperatively in this disordered phase? If cooperatively, can we identify the spatial arrange-

ment of spins that is responsible for the short-ranged and short-lived spin-spin correlations?

In order to answer these questions, one value of energy transfer should be selected based on

the results of the first measurement and the instrumental energy resolution. Students also

should select one temperature between TN and |ΘCW | = 88K, which is in the geometrically

frustrated phase. A two-dimensional map of inelastic scattering intensity will be measured

over a wide area of reciprocal space, and the collected intensity contour will be compared
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to model calculations of possible short-range, spin-spin correlations. For the model calcu-

lation, the dynamical part of the magnetic structure factor should be calculated. Since the

fluctuations are supposed to be quasielastic in nature, however, one may instead use the

static correlation function (t → ∞) derived from Eq. (8), which is essentially equal to the

square of the magnetic structure factor given below.

dσ

dΩ
∝ |F (Q)|2

∑

αβ

(δαβ − Q̂αQ̂β)
∑

RR′

Sα
RS

β
R′e−iQ·(R−R′) (14)

∝ |F (Q)
∑

R

(SR)⊥e
−iQ·R|2

In the expression above, S⊥ = Q̂ × (S × Q̂), which means that only those spin compo-

nents perpendicular to the momentum transfer vector contribute to the magnetic neutron

scattering cross section. Assuming there is no spin anisotropy in the disordered phase, this

equation can be further simplified by replacing S⊥ with S. Since the correlation of the

fluctuation is supposed to be short-ranged, it is straightforward to enter the coordinates

of the magnetic ions and the spin orientations into the above equation and calculate the

momentum dependence of the quasielastic neutron scattering cross section. There may

be several possible candidate models for these short-range fluctuations, such as ferromag-

netic/antiferromagnetic pairs, chains, triangles, tetrahedra, hexagons, etc. Students will be

given computer codes to perform these model calculations, but they are also welcome to

write their own code and/or try to obtain the solutions analytically.

The third set of measurements are intended to determine the temperature dependence

of the short-range spin-spin correlations in the geometrically frustrated phase. At what

temperature do the short-range correlations start to build up? Does the correlation length

change with temperature? In order to answer these questions, several temperatures above

TN should be selected. The region of the strongest intensity should be selected from the

results of the previous measurements. Over this region, the inelastic scattering intensity at

constant-h̄ω will be measured along a particular direction. The obtained data will be fit to

either Gaussian or Lorentzian functions of Q, and their integrated intensity and peak width

will be plotted versus absolute temperature.
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D. Results and Discussions

We intentionally left this section blank; the students will collect their own results and

provide summary discussions.

V. SUMMARY

Triple-axis spectroscopy is one of the most widely used neutron scattering methods in

the study of the lattice and magnetic dynamics of condensed matter. Its strength lies in

its ability to measure S(Q, ω) at specific, well-defined, momentum and energy transfers

with great flexibility. In this experiment, we have studied the geometrically frustrated

antiferromagnetic spinel CdCr2O4. The degree of magnetic frustration is characterized by

the large difference between the Curie-Weiss and Néel temperatures |ΘCW | = 88K and

TN = 7.8K. Below TN , where long-range antiferromagnetic order is established via a cubic-

to-tetragonal lattice distortion (c > a = b), spin wave excitations are observed at non-zero

energy transfers using neutron inelastic scattering methods. A resolution-limited lineshape

in energy h̄ω was observed, suggesting that these spin waves are long-lived in time. Between

TN and |ΘCW |, on the other hand, the magnetic fluctuation exhibits a very broad spectrum

in both energy and momentum. This is consistent with the presence of short-range ordered

magnetic clusters having short-lived correlations in the disordered phase. By comparing

model calculations of the magnetic neutron scattering cross section to the experimentally

measured quasielastic neutron scattering intensity, we find that the magnetic fluctuations

observed in the geometrically frustrated cubic spinel can be understood in terms of short-

range, cooperative fluctuations of hexagonal loops of antiferromagnetically correlated spins.
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