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Problem 3: Band Structure of YBa2Cu3O7
2

In 1986, a family of oxides was found that proved to be superconducting with much
higher critical temperatures than metals and alloys. The compounds in this oxide
family all contain planes of copper and oxygen with Cu atoms at the nodes of a
square lattice (see Fig. P3.1). Some members of this family also contain copper–
oxygen chains.

An example is YBa2Cu3O7. The real structure is shown in Fig. P3.2 (left). The
simplification used in this problem is shown in Fig. P3.2 (right). The primitive cell of
this compound contains two copper–oxygen planes (levels 2 and 3) and one family
of chains, e.g., level 1.

The aim here is to investigate the band structure of YBa2Cu3O7 in a simpli-
fied way using the tight-binding approximation (LCAO). 3.1 examines an isolated
copper–oxygen chain. 3.2 then looks at an isolated copper–oxygen plane and two
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Fig. P3.2 Real structure of YBCO7 (left) and simplified structure used in this problem (right)

2 This problem has been designed with C. Hermann and T. Jolicœur.
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coupled planes, while 3.3 deals with the coupling between a plane and the nearest
chains. Finally, 3.4 compares the results obtained in this way with a more detailed
calculation and experimental data concerning YBa2Cu3O7.

Throughout this exercise, we only take into account those orbitals with energy
levels close to the Fermi level of the solid, i.e., the 3d orbitals of copper and the
2p orbitals of oxygen. To simplify, we assume that, within the basis, these atomic
orbitals combine to form one atomic orbital per Bravais lattice point. This orbital
will be denoted by φ1(r) for the chains (3.1) and φ2(r) for the planes (3.2 and
3.3). These orbitals are assumed to be isotropic, real, and normalised. We apply
the LCAO method to these orbitals. We also assume that the orbitals of two neigh-
bouring sites barely overlap, and take them to be orthogonal for simplicity. There is
no need to write down the relevant Hamiltonians explicitly. All the necessary matrix
elements will be given.

Note: Questions 4 and 7 in 3.2 are not essential for tackling the neighbouring ques-
tions.

3.1: Isolated Copper–Oxygen Chain

Consider an isolated chain of copper and oxygen atoms. Let a be the Cu–Cu distance
and y the unit vector along the chain.

1. Using Fig. P3.3, specify the Bravais lattice and basis of a copper–oxygen chain.

2. What is the associated reciprocal lattice? Specify the corresponding first Bril-
louin zone.

3. Give the form of the Bloch functions in the tight-binding approximation. Let k be
the corresponding wave vector.

4. Considering only nearest neighbours, calculate the dispersion relation EC(k).
Express the result in terms of the matrix elements

E0
C =

∫
d3rφ1(r)ĤCφ1(r) , V2chain = V =−

∫
d3rφ1(r)ĤCφ1(r+ay) ,

Fig. P3.3 Copper–oxygen
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where y is the unit vector along the chain and ĤC is the Hamiltonian of an elec-
tron in the chain.

5. Plot the dispersion relation, assuming V > 0. If the electron occupation of this
band is one electron per unit cell, what is the shape of the Fermi ‘surface’? What
happens if the electron occupation is very low? Give the effective mass m∗ of the
electrons in that case.

3.2: Isolated Copper–Oxygen Plane

Consider an isolated copper–oxygen plane:

1. From Fig. P3.1, specify the Bravais lattice and basis of a copper–oxygen plane.
What is the associated reciprocal lattice. Specify also the corresponding first
Brillouin zone.

As in 3.1: consider one orbital per basis, denoted φ2(r). Let ĤP be the Hamiltonian
of an electron in the plane.

2. Give the form of the Bloch functions in the tight-binding approximation. Let k be
the corresponding wave vector. Calculate the dispersion relation EP(k), consid-
ering only nearest neighbours. Use the matrix elements

E0
P =

∫
d3rφ2(r)ĤPφ2(r)

and

VP =−
∫

d3rφ2(r)ĤPφ2(r+ax) =−
∫

d3rφ2(r)ĤPφ2(r+ay) ,

where x,y are unit vectors along the x and y axes.

3. If the electron occupation of this band is one electron per unit cell, what is the
shape of the Fermi ‘surface’? If the number of electrons is 1 ± δ with δ ≪ 1,
sketch the Fermi surface in the Brillouin zone. What happens if the band is almost
empty?

Now, and only for this question, consider second nearest neighbours in the plane
using the matrix element

V ′P =
∫

d3rφ2(r)ĤPφ2(r±ax±ay) ,

where the notation ± indicates that the four matrix elements are equal by symmetry.
Assume that V ′P > 0.
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4. For one electron per unit cell, what is the new value of the energy for those
values of k that corresponded to the Fermi surface in the last question? Deduce
the approximate position of the new Fermi surface in the region 0≤ kx,ky ≤ π/a.

In the compound YBa2Cu3O7, the planes are in fact coupled into pairs [levels 2 and
3 are coupled in Fig. P3.2 (right)]. We treat the case of an isolated double plane. This
complicates the square lattice basis considered above. We now consider that there
are two orbitals per site of this basis, one for each plane. These are φ2(r) and φ2(r+
cz), where z is the vector joining the two planes. Use the following LCAO function:

ψk(r) =
∑

j

exp(ik ·Rj)
[
Akφ2(r−Rj)+Bkφ2(r+ cz−Rj)

]
,

where the sites Rj run over the points of the Bravais lattice of the plane z = 0 with j
as index. The coefficients Ak and Bk are adjustable parameters.

5. Show that the LCAO function satisfies Bloch’s theorem. The Hamiltonian of an
electron in the double plane is denoted by ĤDP.

Project Schrödinger’s equation ĤDP|Ψk⟩ = E(k)|Ψk⟩ onto the functions φ2(r) and
φ2(r+ cz). Simplify the problem by neglecting overlaps between distinct sites, i.e.,
assume that the orbitals φ2(r) and φ2(r+ cz) are orthogonal.

6. Derive a homogeneous linear system of equations in which the unknowns are the
coefficients Ak and Bk. Specify the coefficients of the system in the form of matrix
elements of ĤDP. Assume that the matrix elements involving only the orbitals of
a given plane are the same as those of ĤP introduced in question 2. For matrix
elements involving orbitals from both planes, keep only the one involving the
same site, viz.,

∫
d3rφ2(r−Rn)ĤDPφ2(r+ cz−Rn) = T .

7. How many bands are there? Give their dispersion E(k) as a function of EP(k)
and T. Plot the result for 0 ≤ kx = ky ≤ π/a. Assuming T small, and when there
are two electrons per unit cell, one from each plane, locate the Fermi energy on
the band diagram E(k) for the given direction. Deduce the shape of the Fermi
surface in the region 0≤ kx,ky ≤ π/a, with the help of question 3.

3.3: Chain and Plane

In YBa2Cu3O7, there are also copper–oxygen chains, as discussed in 3.1 and shown
in Fig. P3.2 (right). Consider now a plane coupled with a lattice of chains. To de-
scribe the combined CuO2 plane in level 2 and Cu–O chains in level 1, use the same
Bravais lattice as in 3.2, but consider two orbitals per primitive cell, viz., φ1(r) of
the chain and φ2(r) of the associated plane.
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1. Start by examining the lattice of Cu–O chains in level 1 using the tight-binding
approximation. These chains are barely coupled together in YBa2Cu3O7 and we
may completely neglect matrix elements involving different chains. Using 3.1,
give the dispersion ECL(k). Plot this function for k = (0,ky) and −π/a ≤ ky ≤
+π/a. Plot the constant energy curves of ECL(k) in the region −π/a ≤ kx,ky ≤
+π/a. With one electron per unit cell in this band, sketch the Fermi ‘surface’.

2. Now investigate the coupled problem of the plane and the chains using the wave
function

Ψk(r) =
∑

j

exp(ik ·Rj)
[
Ckφ1(r−Rj)+Dkφ2(r+ cz−Rj)

]
.

The one-electron Hamiltonian is now ĤPC. Assume that the matrix elements
within a given plane are the same as those of ĤP (see question 2 of 3.2: Iso-
lated Copper–Oxygen Plane) and that, in the chain lattice, they are the same as
those of ĤC (see question 4 of 3.1 and question 1 of 3.3). Using the arguments
in 3.2, show that there are two bands E±(k) and express them in terms of EP(k),
ECL(k), and the matrix element

T ′ =
∫

d3rφ1(r−Rn)ĤPCφ2(r+ cz−Rn) .

3. Assume that T ′ = 0 and that there are two electrons per unit cell, one per unit cell
of the plane and one per unit cell of the chain lattice. Assume also that E0

P = E0
C.

Plot the Fermi surface of the ensemble in the square 0≤ kx,ky ≤+π/a.

4. Now consider the case T ′ ̸= 0, still with E0
P = E0

C. This coupling is only im-
portant where the Fermi surfaces of the plane and the chains used to intersect.
By examining the neighbourhood of the point k = (π/2a,π/2a), make a qual-
itative sketch of the Fermi surface for the electron occupation of question 3 in
3.3: Chain and Plane, then for an occupation number close to this. What sim-
ple remark can be made about the wave functions at the edge of the region
0 ≤ kx,ky ≤ +π/a? This may be important for explaining the Josephson effect
in YBa2Cu3O7 [see Combescot, R., Leyronas, X.: Phys. Rev. Lett. 75, 3732
(1995)].

3.4: Realistic Models of YBa2Cu3O7

1. In fact the structure of YBa2Cu3O7 comprises two weakly coupled planes (levels
2 and 3) and a chain lattice (level 1 coupled to 2) in the primitive cell. Each
isolated CuO2 plane is described by the dispersion obtained in question 7 of 3.2.
This system is more weakly coupled to the chains by T ′ ≪ T in question 4 of
3.3. Figure P3.4 (left) shows the results of a more detailed calculation. Give a
qualitative interpretation of the different parts of the Fermi surface.
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Fig. P3.4 Left: Fermi surface obtained from a detailed calculation, adapted from results of Yu, J.,
et al.: Phys. Lett. A 122, 203 (1987) Right: Data taken by photoemission and positron annihilation
adapted from Pickett, W.E., et al.: Science 255, 46 (1992)

2. In Fig. P3.4 (right), black points represent photoemission measurements of the
band structure and white points correspond to results obtained by another tech-
nique using positron annihilation. What parts of the band structure are these
techniques able to reveal?
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Solution

Isolated Copper–Oxygen Chain

1. The Bravais lattice of a chain is the set of points Rn = nay, where n ∈ Z and y is
a unit vector along the chain axis. The basis then comprises one copper atom at
R0 = 0 and one oxygen atom at ay/2.

2. The reciprocal lattice is then Kp = (2π/a)py, where p ∈ Z. The first Brillouin
zone is the interval [−π/a,+π/a].

3. Using the notation adopted in this book, we have

ψk(r) = 1√
Nn

∑

ℓ

eikℓaφ1(r−ℓay) ,

where Nn is the number of unit cells.

4. We obtain

EC(k) = E0
C−2V coska .

5. Restricting to the first Brillouin zone, this relation is shown in Fig. P3.5. The
function EC(k) is symmetric under

k −→ π

a
− k , EC(k)−→ 2E0

C−EC(k) .

So half the states are in the sub-interval [−π/2a,+π/2a]. One electron per unit
cell corresponds to a half-filled band, and the Fermi energy is then E0

C. The Fermi
‘surface’ reduces to the two points k = +π/2a and k =−π/2a. If the occupation
is very low, only the bottom of the band close to k ≈ 0 is occupied. Then

EC(k)≃ E0
C−2V

(
1− 1

2
k2a2

)
, whence m∗ = h̄2

2Va2 .

Fig. P3.5 Dispersion relation
of the chain obtained in ques-
tion 4, identical to the one
given in Chap. 1
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Isolated Copper–Oxygen Plane

1. The Bravais lattice is square: Rn,m = nax+may, n,m ∈Z. The basis can be taken
as CuO2 with Cu at (0,0) and two oxygens at ax/2 and ay/2. The reciprocal
lattice is square: Kp,q = (2π/a)px+ (2π/a)qy, p,q ∈ Z. The first Brillouin zone
is then the square

([
−π

a
,+π

a

]
along kx

)
×
([
−π

a
,+π

a

]
along ky

)
.

2. We have

ψ
plane
k (r) = 1√

Nn

∑

j

eik·Rjφ2(r−Rj) ,

where Nn is the number of unit cells and j indexes the sites of the Bravais lattice.
Further,

EP(k)
〈
ψ

plane
k |ĤP|ψplane

k

〉
= 1

Nn

∑

i,j

eik·(Rj−Ri)
∫

d3rφ2(r−Ri)ĤPφ2(r−Rj) .

The diagonal terms are all equal to E0
P. A given site Ri has four nearest neigh-

bours: Ri + ax, Ri− ax, Ri + ay, and Ri− ay. For just these cases, we have a
nonzero matrix element equal to −VP. Hence,

EP(k) = E0
P−VP

(
eik·ax + e−ik·ax + eik·ay + e−ik·ay) ,

and

EP(k) = E0
P−2VP(coskxa+ coskya) .

3. The constant energy terms have the form

coskxa+ coskya = C .

We have the symmetry

kx −→
π

a
− kx , ky −→

π

a
− ky , C −→−C .

The half-filled state thus corresponds to C = 0, which reduces to

|kx|+ |ky| = π

a
.

The Fermi ‘surface’ comprises four straight-line segments [see Fig. P3.6 (center)].
The general shape of the constant energy curves has been given in Chap. 3,
Fig. 3.7. If the number of electrons is 1 + δ, the immediately adjacent states
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Fig. P3.6 Fermi surface calculations for a 2D square lattice with nearest neighbour hopping, for
one electron per unit cell (center), (1 + δ) electron per unit cell (right) and for (1 − δ) electron per
unit cell (left)

are filled [see Fig. P3.6 (right)] and if the number is 1− δ the surface becomes
connected [see Fig. P3.6 (left)]. If the band is almost empty, k≈ 0 and EP(k) has
almost circular level curves as seen in Fig. 3.7.

4. In the calculation for question 2, for each site Ri, we take into account second
neighbours, viz., Ri ±ax±ay. This produces an extra term in ⟨ψplane

k |ĤP|ψplane
k ⟩

equal to

+V ′P
[
eik·(ax+ay) + eik·(ax−ay) + e−ik·(ax−ay) + e−ik·(ax+ay)

]
,

and then

E′P(k) = E0
P +2VP(coskxa+ coskya)+4V ′P coskxacoskya .

In the region 0 ≤ kx,ky ≤ π/a, the Fermi surface of question 3 is kx + ky = π/a.
With second nearest neighbours, the energy on this straight line is equal to

E′P = E0
P−4V ′P cos2 kxa .
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Fig. P3.7 Fermi surface tak-
ing into account second near-
est neighbour contributions
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When V ′P > 0, this energy remains unchanged at the center of the square, but is al-
ways reduced for the other values of kx. The constant energy curve E0

P thus moves
toward the corner of the Brillouin zone. For the half-filled band, the new Fermi
surface takes the form shown in Fig. P3.7. (Note that it divides the Brillouin zone
into two equal areas.)

5. If r is translated to r+R0 for R0 in the Bravais lattice, the dummy sum changes
by

Rj→ Rj +R0 , ψk(r+R0) = eik·R0ψk(r) .

6. First project onto φ2(r) to obtain

⟨φ2|E(k)|ψk⟩= E(k)Ak ,

since we neglect non-local overlaps. Then we have

⟨φ2|ĤDP|ψk⟩ = Ak
∑

j

eik·Rj

∫
d3rφ2(r)ĤDPφ2(r−Rj)

+Bk

∑

j

eik·Rj

∫
d3rφ2(r)ĤDPφ2(r+ cz−Rj) .

The first sum only involves matrix elements within a plane. These are equal to
the matrix elements of HP. This first sum is thus equal to EP(k) as obtained in
question 2. In the second sum, only the term Rj = 0 is nonzero and equal to T .
Therefore,

⟨φ2|ĤDP|ψk⟩= EP(k)Ak +TBk = E(k)Ak .

As the two planes enter the expression for ψk(r) in a symmetric way, the projec-
tion onto φ2(r+ cz) leads in a similar manner to

〈
φ2(r+ cz)|E(k)|ψk

〉
= TAk +EP(k)Bk = E(k)Bk .
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Fig. P3.8 Two bands obtained in the tight-binding approximation for a bilayer of CuO2 planes.
Dispersion relation of the two bands obtained in the direction kx = ky (left). Fermi surface obtained
for one electron per CuO2 unit cell per plane (right)

The coefficients Ak and Bk thus satisfy the system

{
AkEP(k)+BkT = AkE(k)

AkT +BkEP(k) = BkE(k)
.

7. There are eigenstates if the determinant of this system is zero:
∣∣∣∣
EP(k)−E(k) T

T EP(k)−E(k)

∣∣∣∣= 0 .

There are two solutions, hence two bands of dispersion

E±(k) = EP(k)±T .

Along kx = ky, EP(k) = E0
P− 4VP coskx. The two bands E± are related to one

another by translation [see Fig. P3.8 (left)]. By symmetry, the Fermi energy for
one electron per plane remains equal to E0

P. This Fermi energy cuts the surface
E+ at a level curve of question 3 with occupation 1−δ, but cuts the surface E− at
a level curve with occupation 1 + δ. The Fermi surface thus comprises two arcs
[Fig. P3.8 (right)].

Chain and Plane

1. Use the LCAO function

ψCL
k (r) = 1√

NCL

∑

j

eik·Rjφ1(r−Rj) .
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Fig. P3.9 Band structure for a lattice of chains: Dispersion relation ECL(k) (left) and constant
energy level curves in the region −π/a≤ kx,ky ≤+π/a (right)

Only the matrix elements of ĤC come in when calculating ECL(k) (see question
3 of 3.1), because there is no coupling between chains. As a consequence,

ECL(k) = EC(ky) ,

as shown in Fig. P3.9 (left). The constant energy curves of ECL(kx,ky) are thus
straight lines at fixed ky [see Fig. P3.9 (right)]. According to question 5 of 3.1,
with one electron per unit cell, the Fermi surface thus comprises two straight
lines ky = +π/2a and ky =−π/2a, as shown in Fig. P3.10.

2. Project ĤPC|Ψk⟩= E(k)|Ψk⟩ onto φ1(r) and φ2(r+cz). The calculation is similar
to the one in question 6 of 3.2. For φ1(r), we obtain

CkECL(k)+DkT ′ = CkE(k) ,

and with φ2(r+ cz), we obtain

CkT ′+DkEP(k) = DkE(k) .

Fig. P3.10 Fermi surface of
the chains for one electron per
unit cell
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Setting the determinant equal to zero, this yields two bands:

E±(k) = 1
2

{
EP(k)+ECL(k)±

√[
EP(k)−ECL(k)

]2 +4T ′2
}

.

3. Since E0
P = E0

C, the plane and chain bands are filled equally. The Fermi surface
then comprises the surfaces of these two ensembles [see Fig. P3.11 (left)].

4. The surfaces intersect in (π/2a,π/2a) when T ′ = 0. If T ′ ̸= 0, the result of ques-
tion 2 above shows that the equality EP = ECL no longer holds for E+ and E−: the
levels repel one another. Level crossing disappears and we obtain the qualitative
result shown in Fig. P3.11 (right). At the edge of the Brillouin zone, the Bloch
states correspond to states completely within the plane or completely within the
chains.

ky

+π/2a

kx(0 , 0 )

ky

kxπ/a(0 ,0)

π/a

Fig. P3.11 Chain and plane Fermi surface for different hopping T ′ between chain and plane (left)
T ′ = 0, (right) T ′ ̸= 0

Realistic Models of YBa2Cu3O7

1. A system of two planes with V ′P ̸= 0 will have a Fermi surface made up of two
segments in [0,π/a]2, as shown in Fig. P3.12 (left). If there is a chain lattice as

ky

Double plane

kx+π/a(0 ,0)

+π/a

ky

Double plane

kx
Chain

Fig. P3.12 Fermi surfaces for the bilayer of CuO2 planes (left) and for the bilayer coupled to a
CuO chain (right)
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well, it will also give a branch that will avoid crossing the branches of the double
plane by the hybridisation phenomenon of questions 3 and 4 of 3.3. This gives
Fig. P3.12 (right), which agrees with Fig. P3.4 (left).

2. The dispersion points due to photoemission [see Fig. P3.4 (right)] coincide with
contributions coming from double planes. In contrast, positron annihilation sees
the chain contribution. A single technique was not enough initially to investigate
the whole Fermi surface. It has since been viewed by higher resolution ARPES
experiments, and matches the results of a full calculation illustrated in Fig. P3.13.

Fig. P3.13 Full calculation of the 3D band structure. Surfaces due to double planes are very close
together, while those due to chains are widely spaced. The Fermi surface is almost cylindrical,
because the hopping integrals between cells are very small in the c direction. Image courtesy
of O. Andersen and I. Mazin from results published in Andersen, O.K., Liechtenstein, A.I., Ro-
driguez, O., Mazin, I.I., Jepsen, O., Antropov, V.P., Gunnarsson, O., Gopalan, S.: Physica C 185–
189, 147–155 (1991)


