
SOPRA v1.4.6 Manual

Adel Dayarian

August 5, 2011

Contents

1 Introduction 3

2 Data type 3

2.1 Contigs . 3

2.2 Pairing information . 4

2.2.1 SOLiD mate pair format . 4

2.2.2 Illumina paired-end format . 4

2.3 Definition of the insert size . 5

3 Implementation, requirements and installation 6

4 Running instructions 7

4.1 SOPRA with prebuilt contigs . 7

4.1.1 Memory issue for large datasets 10

4.1.2 Incorporating other sources of information 11

4.2 SOPRA integrated with Velvet . 15

4.2.1 Illumina data . 15

4.2.2 Color-space SOLiD data . 18

4.3 SOPRA integrated with SSAKE . 22

4.3.1 Illumina data . 22

4.3.2 Color-space SOLiD data . 25

5 How to choose the value of option h ? 28

6 How to choose the value of option w ? 32

7 Empirical value of the insert size 32

1

8 How to choose the value of option c ? 33

9 Filtering SOLiD data 34

2

1 Introduction

SOPRA is an assembly tool for mate pair/paired-end data generated by high throughput

sequencing technologies, e.g. Illumina and SOLiD platforms.

• It is available freely, under the GNU Public License, at

http://www.physics.rutgers.edu/∼anirvans/SOPRA/

• The algorithm is described in this paper:

‘SOPRA: Scaffolding algorithm for paired reads via statistical optimization’

For citation and credit please refer to the same paper.

• If you have a question/problem about running the scripts, feel free to email:

anirvans@physics.rutgers.edu

dayarian@kitp.ucsb.edu

The problem of de novo assembly is divided into two steps: contig assembly and

scaffold assembly. SOPRA is especially focused on the second step, namely, exploiting

mate pair/paired-end information in the process of scaffold assembly. In other words,

SOPRA is a module that can be combined with any of the available algorithms for

fragment/contig assembly. For SOLiD sequencer data, SOPRA uses a hidden variable

model to translate the color-space assembly to base-space.

Before explaining how to run the program, we will briefly go over the types of data

that SOPRA can deal with.

2 Data type

2.1 Contigs

Your input can be

1. A set of pre-built contigs (using your favorite assembler). The contigs should be

in FASTA format. The instruction for this option is given in section 4.1. Please

run your contig assembly in the fragment mode (as opposed to paired mode).

2. We have integrated SOPRA with two particular contig assembly algorithms, namely,

SSAKE and Velvet (the combination of Velvet+SOPRA always performed better).

If you are dealing with SOLiD data and you want to use SOPRA for translation

from color space to base space then you have to choose this option 2. The instruc-

tion for this option is given in sections 4.2 and 4.3.

3

http://www.physics.rutgers.edu/~anirvans/SOPRA/
http://www.biomedcentral.com/1471-2105/11/345/
mailto:anirvans@physics.rutgers.edu
mailto:dayarian@kitp.ucsb.edu

2.2 Pairing information

Your input can be

• One or more mate pair libraries and possibly some fragment ones from SOLiD

sequencer.

• One or more paired-end libraries and possibly some fragment ones from Illumina

sequencer (and possibly some fragment ones from 454).

• If you are going with option 1 in the previous section (prebuilt contigs), then you

can use a combination of SOLiD and Illumina reads.

• If there is other types of pairing information from other sources (e.g. shared

synteny, physical map, etc.), it is possible to feed it into SOPRA. More details are

give in section 4.1. Please email me if you need other formats.

The two data sets used in our paper (DH10B and P. syringae) are available at:

http://hts.rutgers.edu/SOPRA/

2.2.1 SOLiD mate pair format

Two reads belonging to a mate pair come from the same strand and face the same way:

R3 F3
−−−−→ −−−−→
...

Here, dots represent unknown DNA bases located between two reads. Also, R3 and

F3 are tags used to identify the corresponding reads. SOLiD outputs two separate files,

one for R3 reads and one for F3. I strongly suggest that you filter the raw data before

feeding it to the assembler (see 9 for detail). I also suggest that you try trimming the

end of the reads and see if it improves the assembly. In this manual, I will write FASTA

files as something like file.fasta, but feel free to replace it by file.csfasta.

2.2.2 Illumina paired-end format

Two reads of a paired-end combination come from opposite strands and face towards

each other:
read 1a
−−−−−−→..
...←−−−−−−read1b

4

http://hts.rutgers.edu/SOPRA/

For an Illumina paired-end library, SOPRA expects one file containing all the reads

for the corresponding library. In this file, two reads of a paired-end combination come

in consecutive lines:

> some header
read 1a

> some header
read 1b

.

.

.
> some header

read na
> some header

read nb

The Illumina output may contain additional lines about the quality of the reads. You

have to remove those lines before feeding it to SOPRA.

In case of Illumina mate pair with directionality:

read 1b
...−−−−−−→
←−−−−−−..read1a

you need to take the reverse complement of each reads. Write the reverse complemented

reads into a new file and use that as your input. This will fix the directionality of the

reads to what SOPRA expects.

2.3 Definition of the insert size

By insert size we mean the distance between the start of the short reads. For the case

of SOLiD data:

R3 F3
−−−−→ −−−−→
...

the insert size is equal to the sum of length of read R3 and the gap in between the reads.

For the case of Illumina data:

read 1a
−−−−−−→..
...←−−−−−−read1b

the insert size is equal to the sum of length of read 1a, the gap in between the reads

and length of read 1b.

5

3 Implementation, requirements and installation

SOPRA is implemented in Perl and tested on a 64-bit Linux and a Max OS X Server

machine. All the scripts are located in the source codes directory. If your perl is not in

the standard location (i.e. /usr/bin/perl), change the shebang line of the scripts to point

to the version of perl on your system . Also, make sure the scripts are executable (run

chmod +x myscrips.pl)1. It is important to have good amount of computer memory. Of

course, this depends on the genome size and on the coverage. To start with, 8GB RAM

for bacterial size genomes (≤ 10 Mb) and less than 100x coverage.

1If you do not make the scripts executable, then you have to type perl before running them, e.g.
instead of ./vs scaf v1.4.6.pl you should type perl vs scaf v1.4.6.pl

6

4 Running instructions

In each of the following sections, first I will use examples to explain step by step how to

run SOPRA using the necessary options. The exhaustive list of all the options are given

in a table at the end of the corresponding section. I would like to suggest that you try

trimming the end of short reads before feeding it to the assembler to remove the error

prone bases (e.g. last 10 to 20 bps) and check if it improves the assembly.

4.1 SOPRA with prebuilt contigs

For the sake of example, assume there is a:

• a FASTA file containing the contigs called contig1.fasta

• a paired-end Illumina library called mate illu1.fasta with insert size L1

• a mate pair SOLiD library consisting of one F3 and one R3 file: R3 1.fasta and

F3 1.fasta with insert size LS1

Step 1 In this part, we will prepare the contigs and the paired reads using a script

named ‘s prep contigAseq v1.4.6.pl’. For our example, the usage is:

$./s prep contigAseq v1.4.6.pl -contig contig1.fasta -mate mate illu1.fasta

-r3 R3 1.fasta -f3 F3 1.fasta -a mydir sout

Of course, if you do not have a SOLiD (or Illumina) library, you should ignore

-r3 R3 1.fasta -f3 F3 1.fasta (or -mate mate illu1.fasta). You can replace mydir sout

with any name you want, it is going to be the name of the SOPRA output directory.

Using options -mate, -r3 and -f3, you can input multiple libraries (e.g. -mate

mate illu1.fasta mate illu 2.fasta ... -r3 R3 1.fasta -f3 F3 1.fasta -r3 R3 2.fasta -f3

F3 2.fasta ...). The option -mate is stable in the sense that you can input multiple

libraries without having to re-type -mate each time.

This script will produce a file called contigs sopra.fasta. In addition, for each in-

putted short read file mate illu1.fasta, R3 1.fasta and F3 1.fasta, a new file called

mate illu1 sopra.fasta and F3 1 and r3 sopra.fasta is outputted (sopra.fasta is ap-

pended). The later file contains the reads for both R3 and F3 tags. You have

to use your alignment software (e.g. BFAST, Bowtie, BWA,...) to match each

mate illu1 sopra.fasta file and/or F3 1 and r3 sopra.fasta file to contigs sopra.fasta

(i.e. use mate illu1 sopra.fasta as the query file and contigs sopra.fasta as the ref-

erence). The output should be in SAM or BAM format. The SAM files can be

compressed: .zip or .gz. While aligning, you do not have to ask only for uniquely

7

mapped reads, we will remove the reads that map into more than one places

later. The alignment software might have the option for single-end reads mode or

paired-end one. Use the single-end mode.

Step 2 For each library in the previous part, you either have a SAM (can be in com-

pressed format: .zip or .gz) or a BAM file. You can name these files as you

wish. However, in our example, let us name them as: mysam mate illu1 and

mysam solid1. The following script, named ‘s parse sam v1.4.6.pl’, removes the

pairs where at least one of the reads either do not map or maps in multiple places.

In other words, it only keep the pairs for which both reads map uniquely. If your

fiels are in the SAM format, then run:

$./s parse sam v1.4.6.pl -sam mysam mate illu1 mysam solid1 -a mydir sout

mydir sout is the address to the output directory that you used in step 1. For

example, if your current directory is already mydir sout, you should type

‘-a .’ or ‘-a ./’. If your files are in the BAM format, instead of the above, run:

$./s parse sam v1.4.6.pl -bam mysam mate illu1 mysam solid1 -st p samtools address

-a mydir sout

For BAM files, make sure Samtools is installed and the BAM file is indexed. sam-

tools address is the absolute path of Samtools binary, e.g. /share/apps/bin/samtools

(to find out, in the terminal type: which samtools). You can feed both SAM and

BAM files:

$./s parse sam v1.4.6.pl -sam mysam mate illu1 -bam mysam solid1

-st p samtools address -a mydir sout

Options -sam and -bam are stable, so if you have several libraries, you can input

them as -sam file1 file2 file3 ..., or similarly -bam bfile1 bfile2 bfile3 Of course,

if you do not have a SOLiD (or Illumina) library, you should ignore

-sam mysam solid1 (or -sam mysam mate illu1). For each inputted sam file

mysam mate illu1 or mysam solid1, this step generates a file called

mysam mate illu1 parsed or mysam solid1 parsed which will be used below (parsed

is appended to the name of the corresponding SAM/BAM file). See 4.1.1 if you

run into memory problem for large datasets.

Step 3 Assume the insert size for the library associated with mysam mate illu1 parsed

is L1 and the one associated with mysam solid1 parsed is LS1. Run a script named

‘s read parsed sam v1.4.6.pl’:

8

$./s read parsed sam v1.4.6.pl -parsed mysam mate illu1 parsed -d L1 -solid parsed

mysam solid1 parsed -solid d LS1 -a mydir sout (... other optional parameters ...)

Again, mydir sout is the address to the output directory that you used in step 1.

mysam mate illu1 parsed and mysam solid1 parsed were generated in step 2. Note

that if these files are located in another directory different from the current direc-

tory, then you have to type the corresponding address (e.g.

mydir out/mysam mate illu1 parsed). If you have several libraries, you could input

them as:

-parsed mysam mate illu1 parsed -d L1 -parsed mysam mate illu2 parsed -d L2 ...

or similarly

-solid parsed mysam solid1 parsed -solid d LS1 -solid parsed mysam solid2 parsed

-solid d LS2 ...

Basically, each library is followed by option -d or -solid d to specify the correspond-

ing insert size. If you do not have a SOLiD (or Illumina) library, please ignore

-solid parsed mysam solid1 parsed -solid d LS1 (or -parsed mysam mate illu1 parsed

-d L1).

If your files in step 2 were in BAM format, it does not affect the above usage: give

the corresponding parsed file using option -parsed or -solid parsed followed by the

option for insert size. One of the generated files in this step called orientdistinfo cN

will be used in the next part (N is the value of option -c which is 5 by default, see

Table 1 for full list of options). Full list of options is presented in Table 1 below.

Step 4 In this last step, the scaffold assembly is performed using a script named

‘s scaf v1.4.6.pl ’:

$./s scaf v1.4.6.pl -o orientdistinfo cN -a mydir sout (... other optional parameters

...)

‘orientdistinfo pidN’ was produced in step 3 (depending on your current direc-

tory, you might need to write the full address: mydir sout/orientdistinfo pidN). my-

dir sout is the address to the output directory that you used in step 1. The scaffolds

are in a file called scaffold.... pidN.fasta. At the end of the assembly, all the contigs

which were not used in the scaffold assembly (e.g. short contigs, removed contigs

because of stretched springs, etc.) are added to the end of scaffold... pidN.fasta as

well. For such contigs, in their headers, it mentions single contig. Full list of op-

tions is presented in Table 1 below. Some of the optional parameters, specifically

-h and -w, can greatly affect the result. See sections 5 and 6 for further instruction.

9

4.1.1 Memory issue for large datasets

If there is one large dataset or multiple large datasets, you can divid the data into several

parts. The number of parts depends on the size of the libraries, but let us assume you

divid it into 4 parts.

Step 1 Input all the parts together in the first step:

$./s prep contigAseq v1.4.6.pl -contig contig.fasta -mate part1.fasta part2.fasta parts3.fasta

part4.fasta -a mydir sout

Step 2 Mapping 4 different parts to the contigs, there will be 4 SAM/BAM files. In

this step, do not input all the mapped files at the same time, rather run the script

‘s parse sam v1.4.6.pl ’ separately for each of them. Note that the option -p is

being used to give the corresponding part number:

$./s parse sam v1.4.6.pl -sam sam part1 -a mydir sout -p 1

$./s parse sam v1.4.6.pl -sam sam part2 -a mydir sout -p 2

$./s parse sam v1.4.6.pl -sam sam part3 -a mydir sout -p 3

$./s parse sam v1.4.6.pl -sam sam part4 -a mydir sout -p 4

Step 3 Input all the parsed files together for the next script ‘s read parsed sam v1.4.6.pl’:

$./s read parsed sam v1.4.6.pl -parsed sam part1 parsed -d L1 -parsed sam part2 parsed

-d L2 -parsed sam part3 parsed -d L3 -parsed sam part4 parsed -d L4

-a mydir sout -pt 4

The option -pt is being used to give the total number of parts. Finally, run the

last script as usuall.

Step 4 In this last step, the scaffold assembly is performed using a script named

‘s scaf v1.4.6.pl ’:

$./s scaf v1.4.6.pl -o orientdistinfo cN -a mydir sout (... other optional parameters

...)

10

4.1.2 Incorporating other sources of information

In addition to short read data from sequencing technologies, it is possible to use other

types of data (from shared synteny, physical map, etc.) which provide information about

the separation between two points along the genome. We will refer to the sequences of

these points as marker1 and marker2:

5’ marker1 marker2 3’
...

These sequences are assumed to be located on the same strand of the DNA. Of course, if

needed, one can always take the reverse complement of one of the reads for the above to

hold. You have to provide a tab delimited file where each line contains the information

about a pair of markers in the following format:

column 1: contig number associated to marker1.

column 2: position of marker1 on the corresponding contig.

column 2: ‘+’ or ‘-’ depending whether marker1 itself or its reverse complement maps

to the corresponding contig.

column 4: contig number associated to marker2.

column 5: position of marker2 on the corresponding contig.

column 6: ‘+’ or ‘-’ depending whether marker2 itself or its reverse complement maps

to the corresponding contig.

column 7: Distance between two markers (Position of marker2 - Position of marker1)

For example, the line “76 1300 + 142 700 - 8500” implies that marker1 maps on contig

number 76 at position 1300 and the marker is on the same strand as this contig. Also,

marker2 maps on contig number 142 at position 700 and the marker is on the opposite

strand as this contig (reverse complement of marker2 maps to the contig). The distance

between markers on the genome is 8500. Note that in our convention, marker2 is to the

right of marker1 on the reference genome.

One additional point is that the way you number the contigs is not arbitrary. The

numbering of contigs should match the order in which they appear in the FASTA file

containing the contigs. This FASTA file should be in this format:

11

>some header
contig 1

> some header
contig 2

> some header
contig 3

.

.

.

Let us call the tab delimited file containing the marker information as marker info.

The running instruction is as follow.

• If in addition to the marker data, you have regular short read libraries (e.g. from

Illumina, SOLiD, etc.) –

follow the steps 1, 2 and 3 as explained above in the previous section. However,

step 4 is modified:

Step 4 : $./s scaf v1.4.6.pl -n marker info -o orientdistinfo cN -a mydir sout (...

other optional parameters ...)

The marker data is inputted using option -n. See the previous section for the def-

inition of rest of the options. You can also input your trust in marker information

relative to short read data using option -t. The default value is 1. This means

each pair of markers is equivalent to a pair of short reads. If you have confidence

in the marker data, you can increase this option. For example, if you choose -t

3, then each pair of markers will be counted 3 times. In other words, it will be

equivalent to 3 short read pairs.

• If you only have marker data without any short read libraries –

Step I In this part, we will prepare the contigs.

$./s prep contigAseq v1.4.6.pl -contig contig1.fasta -nonseq 1 -a mydir sout

You can replace mydir sout with any name you want, it is going to be the name

of the SOPRA output directory. contig1.fasta is the FASTA file containing

the contigs. This script will produce a file called contigs sopra.fasta which

will be used in the next step.

Step II In this step, the scaffold assembly is performed.

$./s scaf v1.4.6.pl -n marker info -a mydir sout (... other optional parameters

...)

12

mydir sout is the address to the output directory that you used in step 1.

The scaffolds are in a file called scaffold.... pidN.fasta. At the end of the as-

sembly, all the contigs which were not used in the scaffold assembly (e.g.

short contigs, removed contigs because of stretched springs, etc.) are added

to the end of scaffold... pidN.fasta as well. For such contigs, in their headers,

it mentions single contig. Full list of options is presented in Table 1 below.

13

Table 1: Parameters of SOPRA with prebuilt contigs.

Step 1
s prep contigAseq
v1.4.6.pl

-contig File in FASTA format containing the contigs

-mate File in FASTA format containing reads from a paired-end
Illumina library

-r3 and -f3 Files in FASTA format containing R3 and F3 tag reads
from a mate pair SOLiD library.

-nonseq Set equal to 1 if you are only inputting marker data
without any short read library

-a Name of the output directory

Step 2
s parse sam v1.4.6.pl

-sam File(s) in SAM format containing the alignment result

-bam File(s) in BAM format containing the alignment result,
make sure Samtools is installed and the BAM file is
indexed.

-st p Absolute path of Samtools binary

-p Part number - optional.

-a Name of the output directory

Step 3
s read parsed sam
v1.4.6.pl

-parsed Parsed SAM/BAM file (obtained in step 2) for a paired-end
Illumina library, has to be followed by option -d

-d Insert size for the corresponding paired-end library

-solid parsed Parsed SAM/BAM file (obtained in step 2) for a mate pair
SOLiD library, has to be followed by option -solid d

-solid d Insert size for the corresponding mate pair library

-c If the number of times a read and its reverse complement
appear in the library is equal to or more than this value,
the pairing information from that read will be disregarded
- optional (default 5). See 8 for further instruction.

-e If set equal to 1, the empirical value for the insert size will
not be used - optional (default 0). See 7 for further detail.

-pt Total number of parts - optional.

-a The output directory that you used for the formating
script in step 2

Step 4
s scaf v1.4.6.pl

-o orientdistinfo pidN file from step 3

-w Minimum number of links between two contigs - optional
(default 4). It is a good idea to try a couple of different
values. See 6 for further instruction

-L Minimum length of contigs to be used in scaffold assembly
- optional (default 150).

-h High coverage contigs (above mean coverage +
h×std coverage) are not considered in the scaffold assembly
mainly to exclude reads from repetitive regions - optional
(default 2.2). See 5 for further instruction.

-n Tab delimited file containing marker information (from
other sources such as shared synteny, physical map, etc.)

-t Trust in marker information relative to short read data -
optional (default 1)

-a The output directory that you used for the formating
script in step 2

14

4.2 SOPRA integrated with Velvet

For this option, you need to have Velvet installed too.

4.2.1 Illumina data

For the sake of example, assume you have two paired-end libraries called mate1.fasta with

insert size L1 and mate2.fasta with insert size L2. Also, you might have two fragment

libraries called fragment1.fasta and fragment2.fasta.

Step 1 You have to run Velvet in the fragment mode, meaning, you should not invoke

-shortPaired or -longPaired options; instead, use -short or -long options. For our

example, you will need to run something like:

$./velveth mydir vel hash length -short mate1.fasta mate2.fasta fragment1.fasta

fragment2.fasta

You can replace mydir vel with any name you want, it is going to be the name of

the Velvet output directory. hash length is a Velvet parameter that you need to

choose (e.g. 21); please refer to Velvet manual for instructions. Next, you need to

run:

$./velvetg mydir vel -read trkg yes -amos file yes -cov cutoff some number

read trkg and amos file are two of the Velvet options that need to be set to yes.

With this setting, Velvet outputs a file named velvet asm.afg which we will use

in later stages. cov cutoff is another Velvet parameter (replace some number by a

number, e.g. 5 or 6). There are other options that you can find in Velvet manual

(I never use exp cov option).

Step 2 Run a formatting script, called ‘format base v1.4.6.pl’.

$./format base v1.4.6.pl -mate mate1.fasta -d L1 -mate mate2.fasta -d L2

-a mydir sout

Using the option -mate, you can input multiple libraries, the same ones as you used

in the last step. Each paired-end library is followed by option -d to specify the

corresponding insert size. You can replace mydir sout with any name you want,

it is going to be the name of the SOPRA output directory. This formating script

will produce a file called sread in.fasta which will be used in later stages.

Step 3 In this part, while we reconstruct the contigs based on Velvet output, we build

the ‘contig connectivity graph’. You have to run a script named ‘vs contig bas v1.4.6.pl’.

15

$./vs contig base v1.4.6.pl -g velvet asm.afg -a mydir sout (... other optional param-

eters ...)

The file velvet asm.afg was generated in step 1 from Velvet. Notice that if this file

is located in another directory different from the current directory, then you have

to type the corresponding address (e.g. mydir vel/velvet asm.afg). mydir sout is

the address to the output directory that you used for the formating script in step

2. For example, if your current directory is already mydir sout, you should type

‘-a .’ or ‘-a ./’.

This step outputs some files whose names contain the string ‘ pidN’, where N is a

random number that changes from one run to another. One of the generated files

called orientdistinfo pidN will be used in the next step. Our reconstructed contigs

are in contig pidN.fasta. Notice that our reconstructed contigs can be slightly

different from the ones given in the Velvet output (contigs.fa). The name of one

of the generated files starts with badselfpair..., you can use this name to see which

options you used in this step.

Step 4 In this last step, the scaffold assembly is performed.

$./vs scaf v1.4.6.pl -o orientdistinfo pidN -a mydir sout (... other optional parame-

ters ...)

‘orientdistinfo pidN’ was produced in step 3 (depending on your current direc-

tory, you might need to write the full address: mydir sout/orientdistinfo pidN).

mydir sout is the address to the output directory that you used for the formating

script in step 2. The scaffolds are in a file called scaffold.... pidN.fasta. At the end

of the assembly, all the contigs which were not used in the scaffold assembly (e.g.

short contigs, removed contigs because of stretched springs, etc.) are added to the

end of scaffold... pidN.fasta as well. For such contigs, in their headers, it mentions

single contig. Some of the optional parameters, specifically -h and -w, can greatly

affect the result. See sections 5 and 6 for further instruction.

16

Table 2: Parameters of SOPRA integrated with Velvet for Illumina data

Step 2
format base v1.4.6.pl

-mate File in FASTA format containing reads for a paired-end
library, has to be followed by -d option

-d Insert size for the corresponding paired-end library

-a Name of the output directory

Step 3
vs contig base v1.4.6.pl

-g afg file, obtained in step 1

-z Minimum contig size - optional (default 1.5 × length of
short reads)

-c If the number of times a read and its reverse complement
appear in the library is equal to or more than this value,
the pairing information from that read will be disregarded
- optional (default 5). See 8 for further instruction
(specially for high coverage datasets).

-e If set equal to 1, the empirical value for the insert size will
not be used - optional (default 0). See 7 for further detail.

-a The output directory that you used for the formating
script in step 2

Step 4
vs scaf v1.4.6.pl

-o orientdistinfo pidN file from step 3

-w Minimum number of links between two contigs - optional
(default 4). It is a good idea to try a couple of different
values (e.g. 5)

-L Minimum length of contigs to be used in scaffold assembly
- optional (default 150). It is a good idea to try a couple of
different values (e.g. 175 or 200)

-h High coverage contigs (above mean coverage +
h×std coverage) are not considered in the scaffold assembly
mainly to exclude reads from repetitive regions - optional
(default 2.2). See 5 for further instruction.

-a The output directory that you used for the formating
script in step 2

17

4.2.2 Color-space SOLiD data

I strongly suggest that you filter and trim the raw SOLiD data before feeding it to

the assembler (see 9 for detail). For the sake of example, assume you have two mate

pair libraries, each of which consist of one F3 and one R3 file: mate1 R3.fasta and

mate1 F3.fasta with insert size L1; mate2 R3.fasta and mate2 F3.fasta with insert size L2.

Also, you might have two fragment libraries called fragment1.fasta and fragment2.fasta.

Step 1 SOPRA is based on the previous format of a pipeline called SOLiD system

de novo accessory tool. The format that we are going to use is not available

online at their website (http://solidsoftwaretools.com/gf/project/denovo/) any more.

Therefore, I have included the necessary scripts in the SOPRA download package

(where you found this documentation), in the folder named SOLiD related scripts.

You also need to compile the color version of Velvet. The pipeline consists of

following parts:

• Data has to be preprocessed before feeding it to Velvet:

$./solid denovo preprocessor.pl -file fragment1.fasta -file fragment2.fasta -file

mate1 R3.fasta -file mate1 F3.fasta -file mate2 R3.fasta -file mate2 F3.fasta

Notice all the mate pair libraries are given as fragment libraries (do not

use options R3 and F3). The two output files, colorspace input.csfasta and

doubleEncoded input.de will be used below.

• Run Velveth de in the fragment mode, meaning, you should not invoke -

shortPaired or -longPaired options; instead use -short or -long options:

$./velveth de mydir vel hash length -short doubleEncoded input.de

You can replace mydir vel with any name you want, it is going to be the name

of the Velvet output directory. hash length is a Velvet parameter that you

need to choose (e.g. 21); please refer to Velvet manual for instructions.

• Next, you need to run:

$./velvetg de mydir vel -read trkg yes -amos file yes -cov cutoff some number

read trkg and amos file are two of the Velvet options that need to be set to

yes. With this setting, Velvet outputs a file named velvet asm.afg. cov cutoff

is a Velvet parameter (replace some number by a number, e.g. 5 or 6). There

are other options that you can find in Velvet manual (I never use exp cov

option).

18

• Velvet output also has to go through a post-processing step. We use the

output of this post-processor that contains the information related to the

positioning of sequences in contigs (the sequences are still in color-space):

$./solid denovo postprocessor.pl -csfasta colorspace input.csfasta

-afgfile velvet asm.afg -output myfile

You can replace myfile with any name you want. There is one last step in the

pipeline that outputs the final contigs in DNA-space. However, we do not

use this last step.

Step 2 Run a formatting script, called ‘format col v1.4.6.pl’.

$./format col v1.4.6.pl -R3 mate1 R3.fasta -F3 mate1 F3.fasta -d L1 -R3 mate2 R3.fasta

-F3 mate2 F3.fasta -d L2 -frag fragment1.fasta fragment2.fasta -a mydir sout

Using options -F3, -R3 and -frag, you can input multiple libraries, the same ones

as you used in the last step. Each mate pair library is followed by option -d to

specify the corresponding insert size. The option -frag is stable in the sense that

you can input multiple fragment libraries without having to re-type -frag each

time. You can replace mydir sout with any name you want, it is going to be the

name of the SOPRA output directory. This formating script will produce a file

called sread in.fasta which will be used in later stages.

Step 3 In this part, while we reconstruct the contigs based on Velvet output, we build

the ‘contig connectivity graph’. Also, the contigs are translated from color-space to

regular base-space. Notice that our reconstructed contigs can be slightly different

from the ones obtained in SOLiD de novo pipeline. You have to run a script named

‘vs contig col v1.4.6.pl’.

$./vs contig col v1.4.6.pl -f myfile -a mydir sout (... other optional parameters ...)

The file myfile was generated in step 1 from solid denovo postprocessor.pl. Notice

that if this file is located in another directory different from your current directory,

then you have to type the corresponding address (e.g. mydir vel/myfile). mydir sout

is the address to the output directory that you used for the formating script in

step 2. For example, if your current directory is already mydir sout, you should

type ‘-a .’ or ‘-a ./’.

This script outputs some files whose names contain the string ‘ pidN’, where N is

a random number that changes from one run to another. One of the generated

files called orientdistinfo pidN will be used in the next step. Our reconstructed

contigs are in contig pidN.fasta. Notice that our reconstructed contigs can be

19

slightly dfferent from the ones given in the Velvet output. The name of one of

the generated files starts with badselfpair..., you can use this name to see which

options you used in this step.

Step 4 In this last step, the scaffold assembly is performed.

$./vs scaf v1.4.6.pl -o orientdistinfo pidN -a mydir sout (... other optional parame-

ters ...)

‘orientdistinfo pidN’ was produced in step 3 (depending on your current direc-

tory, you might need to write the full address: mydir sout/orientdistinfo pidN).

mydir sout is the address to the output directory that you used for the formating

script in step 2. The scaffolds are in a file called scaffold... pidN.fasta. At the end

of the assembly, all the contigs which were not used in the scaffold assembly (e.g.

short contigs, removed contigs because of stretched springs, etc.) are added to the

end of scaffold... pidN.fasta as well. For such contigs, in their headers, it mentions

single contig. Some of the optional parameters, specifically -h and -w, can greatly

affect the result. See sections 5 and 6 for further instruction.

20

Table 3 : Parameters of SOPRA integrated with Velvet for color-space SOLiD data

Step 2
format col v1.4.6.pl

-R3 and -F3 Files in FASTA format containing R3 and F3 tag reads
for a mate pair library, these two options should be used
next to each other. They need to be followed by -d
option

-d Insert size for the corresponding mate pair library

-frag File in FASTA format containing reads for a fragment
(unpaired) library - optional

-a Name of the output directory

Step 3
vs contig col v1.4.6.pl

-f The output of solid denovo postprocessor.pl, obtained in
step 1

-z Minimum contig size - optional (default 1.5 × length of
short reads)

-c If the number of times a read and its reverse complement
appear in the library is equal to or more than this value,
the pairing information from that read will be
disregarded - optional (default 5). See 8 for further
instruction (specially for high coverage datasets).

-e If set equal to 1, the empirical value for the insert size
will not be used - optional (default 0). See 7 for further
detail.

-a The output directory that you used for the formating
script in step 2

Step 4
vs scaf v1.4.6.pl

-o orientdistinfo pidN file from step 3

-w Minimum number of links between two contigs - optional
(default 4). It is a good idea to try a couple of different
values. See 6 for further instruction

-L Minimum length of contigs to be used in scaffold
assembly - optional (default 150)

-h High coverage contigs (above mean coverage +
h×std coverage) are not considered in the scaffold
assembly mainly to exclude reads from repetitive regions
- optional (default 2.2). See 5 for further instruction.

-a The output directory that you used for the formating
script in step 2

.

21

4.3 SOPRA integrated with SSAKE

Contig assembly is performed based upon our modification of SSAKE v3.2 which can

also handle color-space data. Before going on, I would like to suggest that you try

trimming the end of short reads before feeding it to the assembler to remove the error

prone bases (e.g. last 10 or 15 bps) and check if it improves the assembly.

4.3.1 Illumina data

For the sake of example, assume you have two paired-end libraries called mate1.fasta with

insert size L1 and mate2.fasta with insert size L2. Also, you might have two fragment

libraries called fragment1.fasta and fragment2.fasta.

Step 1 Run a formatting script, called ‘ss format base v1.4.6.pl’.

$./ss format base p1.pl -mate mate1.fasta -d L1 -mate mate2.fasta -d L2

-frag fragment1.fasta fragment2.fasta -a mydir sout

Using options -mate and -frag, you can input multiple libraries. Each paired-end

library is followed by option -d to specify the corresponding insert size. The option

-frag is stable in the sense that you can input multiple fragment libraries without

having to re-type -frag each time. You can replace mydir sout with any name you

want, it is going to be the name of the SOPRA output directory. This formatting

script will produce a file called sread in.fasta which will be used in later stages.

Step 2 In this part, while we construct the contigs, we build the ‘contig connectivity

graph’. You have to run a script named ‘ss contig base v1.4.6.pl’.

$./ss contig base v1.4.6.pl -a mydir sout (... other optional parameters ...)

mydir sout is the address to the output directory that you used for the formating

script in step 1. For example, if your current directory is already mydir sout, you

should type ‘-a .’ or ‘-a ./’. This script outputs some files whose names contain the

string ‘ pidN’, where N is a random number that changes from one run to another.

One of the generated files called orientdistinfo pidN will be used in the next step.

Constructed contigs are in contig pidN.fasta. The name of one of the generated

files starts with singlets..., you can use this name to see which options you used in

this step.

Step 3 In this last step, the scaffold assembly is performed.

$./ss scaf v1.4.6.pl -o orientdistinfo pidN -a mydir sout (..other optional parame-

ters..)

22

‘orientdistinfo pidN’ was produced in step 3 (depending on your current direc-

tory, you might need to write the full address: mydir sout/orientdistinfo pidN).

mydir sout is the output directory that you used for the formating script in step

1. The scaffolds are in a file called scaffold... pidN.fasta. At the end of the as-

sembly, all the contigs which were not used in the scaffold assembly (e.g. short

contigs, removed contigs because of stretched springs, etc.) are added to the end

of scaffold... pidN.fasta as well. For such contigs, in their headers, it mentions

single contig.

23

Table 4: Parameters of SOPRA integrated with SSAKE for Illumina data

Step 1
ss format base v1.4.6.pl

-mate File in FASTA format containing reads for a paired-end
library, has to be followed by -d option

-d Insert size for the corresponding paired-end library

-frag File in FASTA format containing reads for a fragment
(unpaired) library - optional

-a Name of the output directory

Step 2
ss contig base v1.4.6.pl

-m Minimum number of overlapping bases with the current
contig during overhang consensus build up for extension -
optional (default 16)

-o Minimum number of reads needed to call a base during an
extension - optional (default 3)

-c If the number of times a read and its reverse complement
appear in the library is equal to or more than this value,
the pairing information from that read will be disregarded
- optional (default 5). See 8 for further instruction
(specially for high coverage datasets).

-r Minimum base ratio used to accept a overhang consensus
base - optional (default 0.7)

-z Minimum contig size - optional (default 2 × length of short
reads)

-t Trim up to -t base(s) on the contig end when all
possibilities have been exhausted for an extension -
optional (default 5)

-e If set equal to 1, the empirical value for the insert size will
not be used - optional (default 0). See 7 for further detail.

-a The output directory that you used for the formating
script in step 1

Step 3
ss scaf v1.4.6.pl

-o orientdistinfo pidN file from step 3

-w Minimum number of links between two contigs - optional
(default 4). It is a good idea to try a couple of different
values. See 6 for further instruction

-L Minimum length of contigs to be used in scaffold assembly
- optional (default 175)

-h High coverage contigs (above mean coverage +
h×std coverage) are not considered in the scaffold assembly
mainly to exclude reads from repetitive regions - optional
(default 2.2). See 5 for further instruction.

-a The output directory that you used for the formating
script in step 1

24

4.3.2 Color-space SOLiD data

I strongly suggest that you filter and trim the raw SOLiD data before feeding it to

the assembler (see 9 for detail). For the sake of example, assume you have two mate

pair libraries, each of which consist of one F3 and one R3 file: mate1 R3.fasta and

mate1 F3.fasta with insert size L1; mate2 R3.fasta and mate2 F3.fasta with insert size L2.

Also, you might have two fragment libraries called fragment1.fasta and fragment2.fasta.

Step 1 Run a formatting script, called ‘ss format col v1.4.6.pl’.

$./ss format col p1.pl -R3 mate1 R3.fasta -F3 mate1 F3.fasta -d L1 -R3 mate2 R3.fasta

-F3 mate2 F3.fasta -d L2 -frag fragment1.fasta fragment2.fasta -a mydir sout

Using options -F3, -R3 and -frag, you can input multiple libraries, the same ones

as you used in the last step. Each mate pair library is followed by option -d to

specify the corresponding insert size. The option -frag is stable in the sense that

you can input multiple fragment libraries without having to re-type -frag each

time. You can replace mydir sout with any name you want, it is going to be the

name of the SOPRA output directory. This formatting script will produce a file

called sread in.fasta which will be used in later stages.

Step 2 In this part, while we construct the contigs, we build the ‘contig connectivity

graph’. Also, the contigs are translated from color-space to regular base-space.

You have to run a script named ‘ss contig col v1.4.6.pl’.

$./ss contig col v1.4.6.pl -a mydir sout (... other optional parameters ...)

mydir sout is the address to the output directory that you used for the formating

script in step 1. For example, if your current directory is already mydir sout, you

should type ‘-a .’ or ‘-a ./’. This script outputs some files whose names contain the

string ‘ pidN’, where N is a random number that changes from one run to another.

One of the generated files called orientdistinfo pidN will be used in the next step.

Constructed contigs are in contig pidN.fasta. The name of one of the generated

files starts with singlets..., you can use this name to see which options you used in

this step.

Step 3 In this last step, the scaffold assembly is performed.

$./ss scaf v1.4.6.pl -o orientdistinfo pidN -a mydir sout (... other optional parame-

ters ...)

‘orientdistinfo pidN’ was produced in step 3 (depending on your current direc-

tory, you might need to write the full address: mydir sout/orientdistinfo pidN).

25

mydir sout is the output directory that you used for the formating script in step

1. The scaffolds are in a file called scaffold... pidN.fasta. At the end of the as-

sembly, all the contigs which were not used in the scaffold assembly (e.g. short

contigs, removed contigs because of stretched springs, etc.) are added to the end

of scaffold... pidN.fasta as well. For such contigs, in their headers, it mentions

single contig.

26

Table 5: Parameters of SOPRA integrated with SSAKE for color-space SOLiD data

Step 1
ss format col v1.4.6.pl

-R3 and -F3 Files in FASTA format containing R3 and F3 tag reads
for a mate pair library, these two options should be used
next to each other. They need to be followed by -d
option

-d Insert size for the corresponding paired-end library

-frag File in FASTA format containing reads for a fragment
(unpaired) library - optional

-a Name of the output directory

Step 2
ss contig col v1.4.6.pl

-m Minimum number of overlapping bases with the current
contig during overhang consensus build up for extension
- optional (default 16)

-o Minimum number of reads needed to call a base during
an extension - optional (default 3)

-c If the number of times a read and its reverse
complement appear in the library is equal to or more
than this value, the pairing information from that read
will be disregarded - optional (default 5). See 8 for
further instruction (specially for high coverage
datasets).

-r Minimum base ratio used to accept a overhang
consensus base - optional (default 0.7)

-z Minimum contig size - optional (default 2 × length of
short reads)

-t Trim up to -t base(s) on the contig end when all
possibilities have been exhausted for an extension -
optional (default 5)

-e If set equal to 1, the empirical value for the insert size
will not be used - optional (default 0). See 7 for further
detail.

-a The output directory that you used for the formating
script in step 1

Step 3
ss scaf v1.4.6.pl

-o orientdistinfo pidN file from step 3

-w Minimum number of links between two contigs -
optional (default 4). It is a good idea to try a couple of
different values (e.g. 5)

-L Minimum length of contigs to be used in scaffold
assembly - optional (default 175). It is a good idea to
try a couple of different values (e.g. 200)

-h High coverage contigs (above mean coverage +
h×std coverage) are not considered in the scaffold
assembly mainly to exclude reads from repetitive regions
- optional (default 2.2). See 5 for further instruction.

-a The output directory that you used for the formating
script in step 1

27

5 How to choose the value of option h ?

In the scaffolding procees, in order to avoid the contigs coming from repetitive regions, we

exclude high coverage contigs. Namely, anything with coverage above (mean coverage +

h×std coverage) is not considered in the scaffold assembly. mean coverage is the average

of coverage over all contigs and std coverage is the corresponding standard deviation.

The default value of h in vs scaf v1.4.6.pl is 2.2 and in ss scaf v1.4.6.pl is 2. Assume

after running one of these scripts, you see something like this in the terminal:
average coverage: 21.13 standard deviation: 11.87 coverage cutoff : 47.24

removed coverage 472 - length 484
removed coverage 320 - length 204
removed coverage 287 - length 921
.
.
.
removed coverage 106 - length 1796
removed coverage 97 - length 223
removed coverage 88 - length 507
removed coverage 83 - length 1130
removed coverage 80 - length 302
removed coverage 77 - length 361
removed coverage 75 - length 448
removed coverage 71 - length 507
removed coverage 70 - length 1839
removed coverage 68 - length 669
removed coverage 67 - length 751
removed coverage 66 - length 444
removed coverage 65 - length 280
removed coverage 63 - length 472
removed coverage 63 - length 402
removed coverage 62 - length 264
removed coverage 60 - length 1070
removed coverage 58 - length 1110
removed coverage 56 - length 208
removed coverage 56 - length 2814
removed coverage 56 - length 588
removed coverage 55 - length 1166
removed coverage 55 - length 578
removed coverage 54 - length 1446
removed coverage 54 - length 202
removed coverage 53 - length 1719
removed coverage 53 - length 274
removed coverage 53 - length 985
removed coverage 52 - length 464
removed coverage 50 - length 936
removed coverage 49 - length 375
removed coverage 49 - length 853
removed coverage 48 - length 207
removed coverage 48 - length 855
removed coverage 48 - length 1022
removed coverage 48 - length 300
removed coverage 48 - length 708
removed coverage 48 - length 762
removed coverage 47 - length 1038
removed coverage 47 - length 958
removed coverage 47 - length 2691
removed coverage 47 - length 1105
removed coverage 47 - length 224
removed coverage 47 - length 686
removed coverage 47 - length 1223
removed coverage 47 - length 987
removed coverage 47 - length 756
removed coverage 47 - length 857
removed coverage 47 - length 448

The first line gives the average coverage over all contigs, standard deviation and cov-

erage cutoff. If you increase the value of h, the coverage cutoff will increase too and vice

versa. Each subsequent line corresponds to a removed contig where the corresponding

coverage (and length) is shown. For the lines located at the beginning, there is usually a

28

jump between the coverage of the removed contigs. As you go lower, the coverage jump

between consecutive lines decreases. Eventually you see that there are multiple removed

contigs with the same coverage. That is where you want the cutoff to be. In the above

example, the default cutoff of 47 is fine. Of course, you can try a couple of different

values for h and see the result. Now imagine if the default cutoff was for example 40.

Then, you would see a lot of removed contigs with the same or close by coverage (with

values of 40, 41, etc.). In that case, you might want to increase the cutoff by increasing

h. This is the rule of thumb, however, there can be particular situations depending on

your dataset which will require another value for h.

A good way to determine where the cutoff value should be is the following. De-

pending on your case, after running the SAM parsing script (s parse sam v1.4.6.pl) or

the contig building script (e.g. vs contig base v1.4.6.pl), in the mydir sout/div directory,

there will be a file called coverage distribution.txt which contains the contigs coverage.

By looking at the histogram of values in this file (for example, using Matlab), you can

get an idea of where to put the cutoff. For the case of Figure 1, you want the cutoff

to be around 1000. This case is from a very high coverage library, with average contig

coverage around 500x. In another example shown in Figure 2, you want the cutoff to

be around 40. For the case of Figure 3, the default cutoff came out to be around 400.

However, it should be between 200 to 250. Therefore, parameter h had to be reduced

to get the best result.

In the example shown in Figure 4 obtained by using SOPRA with prebuilt contigs,

the default cutoff came out to be around 36. There were a lot of contigs where no reads

mapped and therefore their coverage was zero. For this reason, the cutoff turned out to

be too low and many of the contigs were removed. However, it should be around 60 to

80. Therefore, parameter h had to be increased to get the best result.

29

Figure 1: Cutoff should be around 1000.

Figure 2: Cutoff should be around 40.

30

Figure 3: In this case, the default cutoff came out to be around 400. However, it should
be between 200 to 250. Therefore, parameter h was reduced to get the best result.

Figure 4: In this case, the default cutoff came out to be around 36. However, it should
be around 60 to 80. Therefore, parameter h was increased to get the best result.

31

6 How to choose the value of option w ?

While running the scaffold building script (e.g. s scaf v1.4.6.pl), on the terminal, SOPRA

first outputs the removed contigs due to their high coverage. After that, you will see

something like the following:

Average number of links between two contigs using minlength 150 and minlink 2 is 63.38, ...

Starting cycle 1 of orientation assignment

Average number of links between two contigs using minlength 150 and minlink 4 is 184.84, ...

Here, 4 is the value used for the option -w. If the corresponding average value (184.84

here) is greater than 100, it suggests that you should try increasing the option -w. As a

rule of thumb, you should try values around 4 or 5% of the average value. For example,

if the average number of links is around 700, you should try values such as 25, 30 or 35

for the option -w. On the other hand, if the average value is relatively small (e.g. 10),

you should try decreasing the value of option -w.

7 Empirical value of the insert size

In the case where there are enough long contigs2, the typical value of the insert size can

be estimated from the mate pairs located on the same contig. The empirical insert size

is equal to the mean value of the separation for such pairs. Note that we ignore the

outliers for which the separation between the pair is very different from the value of the

insert size inputted by user3.

If there is enough data points, instead of the value inputted by the user while running

the formatting script, SOPRA uses the empirical value. If you do not want SOPRA to

use the empirical value, instead, you want it to use the inputted value, set option e equal

to 1. While running the contig building script, SOPRA outputs both the inputted insert

size (called suggested value), the empirical value and the value which was eventually

used. In the terminal, you would see something like this:

Associated library: mate file.fasta ‘

Suggested insert size: 1350 Emperical insert size: 1206 (based on 238255 pairs)

Suggested insert size: 1350 We will use: 1206

In any case, it is a good idea to check the empirical distribution of separation between

pairs: Depending on your case, after running the script that reads the parsed SAM file
2Long means > 2×insert size.
3Outlier means: abs((separation between the pair) - (inputted insert size)) > (2.5×inputted insert size)

or if the separation between the pair is negative (i.e. wrong order).

32

(s read parsed sam v1.4.6.pl) or the contig building script (e.g. vs contig base v1.4.6.pl),

in the mydir sout/div directory, for each inputed mate pair library, there is a file called

insertsize distribution nameofthelibrary suggestedvalue.txt. This file contains the separa-

tion between two reads of a pair for those pairs located on the same contig. By looking

at the corresponding histogram, you get a sense of how the distribution looks like. If

you decide to change the inputted insert size, unfortunately, you have to rerun the for-

matting script and the contig building script again. However, most of the time, you do

not need to readjust the insert size, since, the empirical value calculated by SOPRA will

be good enough.

8 How to choose the value of option c ?

You probably would not need to change this option unless your library coverage is too

high, much larger than 100x. Depending on your case, after running the SAM parsing

script (s parse sam v1.4.6.pl) or the contig building script (e.g. vs contig base v1.4.6.pl),

in the mydir sout/div directory, there will be a file named copynumber.txt which contains

the distribution for the number of times a read and its reverse complement appear in

the library. Only those reads which were incorporated in contig building are included.

You can look at the histogram, for example, using Matlab. If the typical value is below

4 or 5, then leave the default value. Otherwise, you might want to increase this option

(unfortunately, to do so, you have to rerun the contig building script again with the new

option).

While running the scaffold building script (e.g. s scaf v1.4.6.pl), on the terminal,

SOPRA first outputs the removed contigs due to their high coverage. After that, you

will see something like the following:

Average number of links between two contigs using minlength 150 and minlink 2 is 63.38, ...

Starting cycle 1 of orientation assignment

Average number of links between two contigs using minlength 150 and minlink 5 is 184.84, ...

Here, 5 is the value used for the option -w. If the corresponding average value (184.84

here) is greater than 100, it might suggests that you should try decreasing the value of

option -c (and probably increase option -w). On the other hand, if the average value is

relatively small (e.g. 10), you should try increasing the value of option -c.

33

9 Filtering SOLiD data

For the purpose of de novo assembly, I strongly recommend that you filter and trim the

raw data. The performance of any assembler is sensitive to the sequencing error rate.

For high coverage datasets, in many cases, assembler performance benefits from filtering

the data. The lowered coverage is more than compensated for by the improvement of

the data quality. I used an in-house filter for SOLiD data. I have included this filter

in the SOPRA download package (where you found this documentation), in the folder

named SOLiD filter. An example would be:

$./SOLiD preprocess meanFilter SOPRA v1.pl -i mp -f solid F3.csfasta -g solid F3 QV.qual

-r solid R3.csfasta -s solid R3 QV.qual -q 19 -trunc on -tr len 38 -n on -v off -o out

Option q determines the quality value threshold. Options trunc and tr len determine

the trimming length. In this example, 38 is the final length of the short reads after

trimming. By turning on option -n, reads which contain any dots are removed.

The above filter is also available at http://hts.rutgers.edu/ Please use the one called:

‘Mean Filter (SOLiD preprocess meanFilter SOPRA v1.pl)’

34

	Introduction
	Data type
	Contigs
	Pairing information
	SOLiD mate pair format
	Illumina paired-end format

	Definition of the insert size

	Implementation, requirements and installation
	Running instructions
	SOPRA with prebuilt contigs
	Memory issue for large datasets
	Incorporating other sources of information

	SOPRA integrated with Velvet
	Illumina data
	Color-space SOLiD data

	SOPRA integrated with SSAKE
	Illumina data
	Color-space SOLiD data

	How to choose the value of option h ?
	How to choose the value of option w ?
	Empirical value of the insert size
	How to choose the value of option c ?
	Filtering SOLiD data

