SAS Honors Seminar 256: Extraterrestrial Life

9/13/2011

Reading for Thursday (9/15)

Bennett & Shostak 4.2, 6.1, 6.3

history of terran lifeSagan (1967)

- revolutionized biology
- read abstract and sections

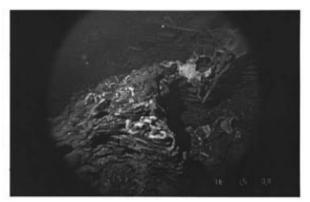
1, 2.1-2.3, 2.6, 3.1-3.3, 3.6,

3.8, and 4 (see cheat sheet)

Lynn Margulis University of Massachusetts

Response paper for Tuesday (9/20)

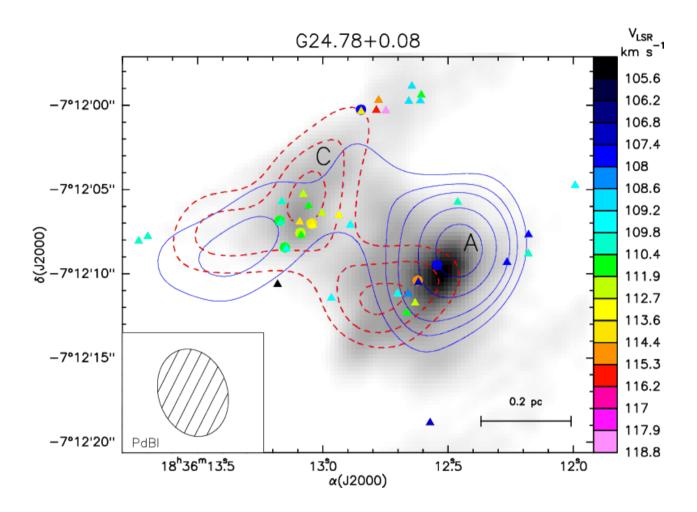
Write a statement justifying what you believe to be the appropriate level of involvement of Rutgers in the field of astrobiology. Do you favor a new department? an interdisciplinary degree program? an undergraduate major?



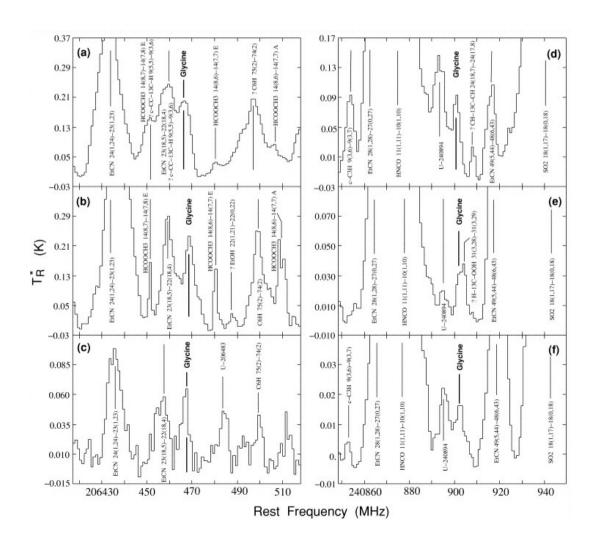
no commitment at this time to such a speculative enterprise? Your statement should be specific but written at a level that is accessible to a nonspecialist (e.g., a university administrator).

Upcoming field trip (9/22)

Deep Sea Microbiology Lab – Prof. Costa Vetriani
Institute of Marine & Coastal Sciences
Department of Biochemistry and Microbiology
http://marine.rutgers.edu/deep-seamicrobiology/



lava flows and tube worms 2500m below the surface of the Pacific


Alcohol in space

Moscadelli et al. (2007, A&A, 472, 867): colored symbols are methanol masers in the dense gas surrounding two protostars

Glycine in interstellar gas

Kuan et al. (2003, ApJ, 593, 848): multiple glycine lines possibly detected in three regions of dense interstellar gas

Glycine in a comet

Elsila et al. (2009, M&PS, 44:9, 1323):
glycine definitely detected in
Comet Wild 2 by NASA's

Stardust sample return mission;
high 13C enrichment (vs. 12C)
implies extraterrestrial origin

