Geometry in Physics

Example 1.
\[
\begin{align*}
\text{Fields in physics:} \\
\text{Vector calculus in Electromagnetism,} \\
\text{Fluid dynamics, vectors and tensors} \\
in elasticity.
\end{align*}
\]

Example 2.
\[
\begin{align*}
\text{Spacetime as 4-dim space} \\
\text{Special and general relativity,} \\
\text{Geodesics and curvature} \\
\text{with metric tensor.}
\end{align*}
\]

Example 3.
\[
\begin{align*}
\text{Classical mechanics} \\
\text{positions and velocities in 6N dimensional space} \\
\text{Position and momenta} \\
(\text{Phase Space})
\end{align*}
\]

We could deal with \(\mathbb{R}^n \) but for some problems we might want to deal with more general "curved" spaces. Hence the motivation to study manifolds.

Example: A space looking like a sphere.
Before we define a manifold we need a few things from point set topology. We have defined open sets and closed sets in \(\mathbb{R}^n \) using a concept of distance. The distance between \(x, y \)

\[
d(x, y) = \|x - y\| = \sqrt{(x - y, x - y)}
\]

allowed definition of \(\varepsilon \)-neighborhoods \(N_\varepsilon(x) = \{y \in \mathbb{R}^n : d(x, y) < \varepsilon\} \).

An open set \(U \) had every point inside it having an \(\varepsilon \)-neighborhood fully inside the open set.

Closed sets were complements of open sets.

These open sets have the property that if \(U_1 \) and \(U_2 \) are open sets \(U_1 \cap U_2 \) is open too.

Proof: For any \(p \in U_1 \), there is an \(\varepsilon_1 > 0 \) s.t. \(N_{\varepsilon_1}(p) \subset U_1 \).

If \(p \in U_2 \), as well, there is an \(\varepsilon_2 > 0 \) s.t. \(N_{\varepsilon_2}(p) \subset U_2 \).

If \(\varepsilon = \min(\varepsilon_1, \varepsilon_2) \) then \(N_{\varepsilon}(p) \subset U_1 \cap U_2 \).

Similarly if \(\{U_\alpha \} \) is a family of induced open sets, then \(\bigcup_{\alpha} U_\alpha \) is open as well.

Proof: If \(p \in \bigcup_{\alpha} U_\alpha \), then \(p \in U_\alpha \) for some \(\alpha \in \mathbb{A} \).

\(N_{\varepsilon}(p) \subset U_\alpha \subset \bigcup_{\alpha} U_\alpha \).
The null set \emptyset is open since we cannot find any p violating the condition.

\mathbb{R}^n itself is open, since any point $p \in \mathbb{R}^n$ has an ε-neighborhood inside \mathbb{R}^n.

These properties give rise to an axiomatic definition of a topology.

Def. A topology on a set X is a set T of subsets of X, s.t.

a) If $U_1, U_2 \in T$, then $U_1 \cap U_2 \in T$.

b) If $\{U_k \mid k \in A\} \subseteq T$, then $\bigcup_{k \in A} U_k \in T$.

c) $\emptyset \in T$ and $X \in T$.

The tuple (X, T) is called a topological space. Sometimes T is understood.

Def. If $Y \subseteq X$ and X has a topology T, we define $T_Y = \{U \cap Y \mid U \in T\}$ the induced (or relative) topology on Y.

Def. A collection of subsets of X, B, is a basis of a topology T on X if any open set in T can be formed by unions of sets in B.

Continued on Page

Signed Date Signed Date
Examples: neighborhoods of points for different εs for a basis of open sets in \mathbb{R}^n.

In fact, if we consider points in \mathbb{R}^n with rational coordinates, and consider open balls with radii which are positive rationals, we get a basis for the topology on \mathbb{R}^n we mentioned. This basis is countable, i.e. one can number these sets as

$$B = \{ U_i : i \in \mathbb{N} \}$$

Def: Spaces with countable bases are called separable.

Def: If X_1, X_2 has topology T_1, T_2, then $X_1 \times X_2$ has the product topology generated by the basis \mathcal{S}_{U_1, U_2}.

In \mathbb{R}^n, in fact, in any metric space a space with a good distance measure, if $x \neq y$, there are non-intersecting open neighborhoods of x, y.

Def: If $x, y \in X$ with $x \neq y$, the topology T has two open sets U and V s.t. $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Continued on page.
then \((X, T)\) is Hausdorff topological space.

Hausdorff property makes limits unique, for example.

This definition is for completeness. We won't need it so.

Def. If a set \(C \subseteq X\) has the \(\text{property that}\)

any open cover of \(C\), namely \([U_s\text{ s.t. } C \subseteq \bigcup_{s} U_s]\),

then there is finite subcover \([U_{s'}\text{ s.t. } C \subseteq \bigcup_{s'} U_{s'}]\).

That is \(C \subseteq \bigcup_{s'} U_{s'}\).

In \(\mathbb{R}^n\) closed and bounded sets are the only compact sets.

Def. If \(X, Y\) are topological spaces and

we have \(f : X \rightarrow Y\), and any \(W\) for any open

set \(V\) in \(Y\), \(f^{-1}(W)\) is open in \(X\), then \(f\) is

a continuous function.

Def. If \(f : X \rightarrow Y\) is bijection (1-1 and onto) and \(f\) and \(f^{-1}\)

are both continuous, then \(f\) is a homeomorphism.
A homeomorphism says that \(x, y \) are essentially equivalent as topological spaces.

For example:

\[
\text{Subset of } \mathbb{R}^2 \quad \xrightarrow{\phi} \quad \mathbb{R}^2
\]

with induced topology.

Another subset of \(\mathbb{R}^2 \) with induced topology.

Finally, we are ready to define manifolds.

Def. If \(M \) is a topological space and \(p \in M \), then a chart at \(p \) is a continuous function \(\phi : U \to \mathbb{R}^n \), with \(p \in U \), and \(\phi \) being a homeomorphism between \(U \) and \(\phi(U) \).

Note \(\phi(x_1, \ldots, x_k) \), the composition in \(\mathbb{R}^n \), are called the coordinates.
As a result, it is often called the coordinate map. The dimension of a chart is n. It is some work show it to be unique.

Def. A topological manifold is a separable Hausdorff space with an n-dimensional chart around any point. The dimension of the manifold is n.

In this definition, \mathbb{R}^n is a manifold, but \mathbb{R} is a topological manifold of dimension 1 as well.

We need additional structure to, say, do differential functions on manifolds. We need calculus on manifolds, also called an atlas.

The collection of charts on $\mathbb{M} = \{ (\phi_k, U_k) \}$ sets up maps between open sets in \mathbb{R}^n.

Note that $\phi_k \circ \phi_l^{-1} : \phi_l(U \cap U_k) \rightarrow \phi_k(U \cap U_k)$ is a homeomorphism.
$\phi_k \circ \phi_e^{-1}$ is a function from an open subset of \mathbb{R}^n to another open subset of \mathbb{R}^n.

$\phi_k \circ \phi_e^{-1} : (x_1, \ldots, x_n) \mapsto (y_1, \ldots, y_n)$

If we demand that these functions have all partial derivatives up to kth order (sometimes denoted as C^k) we get a related pair of charts.

Def.: An atlas is a C^k atlas if all pairs are C^k related.

Def.: A chart in C^k admissible to an atlas if it is C^k related to all the charts in the atlas.

Def.: A C^k manifold is a topological manifold together with all the admissible charts of some C^k atlas.

For practical purposes, we will be happy with M and an atlas $\mathcal{A} = \{\phi_k \mid k \in \mathbb{Z}^+\}$. We won't need the maximal atlas with all other admissible charts.