Thus \(x = \langle \phi_1, x \rangle \phi_1 + \langle \phi_2, x \rangle \phi_2 + \ldots + \langle \phi_m, x \rangle \phi_m \)

\(\langle \phi_k, x \rangle \phi_k \) is the projection of the vector \(x \) in the direction of \(\phi_k \).

What if \(\{\phi_k\} \) is not necessarily a basis, and consider the projection of a vector \(x \) on the subspace spanned by the system?

Bessel's Inequality: \(\sum_{k=1}^{m} |\langle \phi_k, x \rangle|^2 \leq \|x\|^2 \)

Proof:

\[
\|x\|^2 = \sum_{k=1}^{m} |\langle \phi_k, x \rangle|^2 \geq 0
\]

In other words,

\[
\langle x, x \rangle - \sum_{k} \langle \phi_k, x \rangle \overline{\langle \phi_k, x \rangle} \geq 0
\]

\[
\Rightarrow \langle x, x \rangle - \sum_{k} \langle \phi_k, x \rangle \overline{\langle \phi_k, x \rangle} = \sum_{k} \langle \phi_k, x \rangle \overline{\langle \phi_k, x \rangle} \geq 0
\]

\[
\Rightarrow \|x\|^2 - \sum_{k} |\langle \phi_k, x \rangle|^2 \geq 0
\]

\[
\Rightarrow \|x\|^2 \geq \sum_{k} |\langle \phi_k, x \rangle|^2
\]

Q.E.D.
Note that Bessel's inequality is valid even in infinite-dimensional spaces.

One easy consequence of Bessel's inequality is the Cauchy-Schwarz or the Cauchy-Bunyakovsky-Schwartz inequality. Historical note: Cauchy's proof applied to finite-dimensional vector spaces where the other two expanded it to the infinite-dimensional function spaces.

Cauchy-Schwarz Inequality: \(| \langle x, y \rangle | \leq \| x \| \| y \| \)

Proof: IF \(x = 0 \) THEN \(\langle x, y \rangle = 0 \)

\(\langle x+y, y \rangle = \langle y, y \rangle = \| x+y \| + \| y \| = \| y \| \implies \langle x, y \rangle = 0 \)

If \(x \neq 0 \), \(\| x \| > 0 \), Then define \(\phi_x = \frac{1}{\| x \|} x \)

and apply Bessel's inequality to \(y \)

\(| \langle \phi_x, y \rangle |^2 \leq \| y \| \| y \| \)

\(\implies | \langle \frac{x}{\| x \|}, y \rangle |^2 \leq \| y \| \| y \| \) = \(\| \frac{x}{\| x \|} \| \|^2 \leq \| y \| \| y \| \) \implies | \langle x, y \rangle |^2 \leq \| x \| \| y \| \| y \| \implies | \langle x, y \rangle | \leq \| x \| \| y \| \)

\(\implies \langle x, y \rangle \leq \| x \| \| y \| \) by taking sqrt
Cauchy-Schwarz allows us to define an angle θ between non-zero vectors over reals via
\[
\langle x, y \rangle = \|x\| \|y\| \cos \theta
\]

If you have a set of linearly independent vectors, one can construct an orthonormal system out of it via the Gram-Schmidt orthogonalization process.

\[\{x_1, \ldots, x_m\} \text{ linearly independent} \]

(implies they are non-zero vectors)

Idea: Pick the part of x_i orthogonal to the subspace spanned by $\{x_1, \ldots, x_{i-1}\}$.

Precisely:

\[
\phi_i = \frac{x_i}{\|x_i\|}
\]

\[
\tilde{y}_i = x_i - \sum_{k=1}^{i-1} \langle x_k, x_i \rangle \phi_k
\]

Normalize

\[
\phi_k = \frac{\tilde{y}_k}{\|\tilde{y}_k\|}
\]

"Residual"
(We know that \(\| \phi_k \| = 0 \). Otherwise \(\forall k \), \(\phi_k \) would be linearly dependent).

The linear manifold spanned by \(\phi_1, \ldots, \phi_k \) is the same as the one spanned by \(x_1, \ldots, x_k \):

\[M(\phi_1, \ldots, \phi_k) = M(x_1, \ldots, x_k) \]

Def. The orthonormal system \(\phi_1, \phi_2, \ldots \) is complete if \(x \) only vector orthonormal to all the vectors in the system is the zero vector, namely,

\[\langle \phi_k, x \rangle = 0 \quad \forall k \]

\[\Rightarrow x = 0 \]

Thus, the orthonormal system \(\phi_1, \ldots, \phi_m \) in an \(n \)-dim vector space \(V \) is complete iff

1. \(m = n \)
2. \(\{\phi_1, \ldots, \phi_m\} \) is a basis

\[\|x\|^2 = \sum_{k} \langle \phi_k, x \rangle^2 \]

For every pair \(x, y \in V \)

\[\langle x, y \rangle = \sum_{m} \langle x, \phi_m \rangle \langle \phi_m, y \rangle \]
Proof: Assume \(\phi_1, \phi_2, \ldots, \phi_m \) is a complete orthonormal system.

Consider \(z = x - \sum_{k=1}^{m} \langle \phi_k, x \rangle \phi_k \).

\[\langle \phi_k, z \rangle = 0 \quad \text{for} \quad k=1, \ldots, m \]

Hence \(z = 0 \) \(\Rightarrow \) \(x = \sum_{k=1}^{m} \langle \phi_k, x \rangle \phi_k \).

So any \(x \) can be expanded as a linear combination of \(\phi_k \) since \(\phi_1, \ldots, \phi_m \) are linearly independent. Hence \(\phi_1, \ldots, \phi_m \) in a basis.

So, completeness \(\iff \) (ii)

If \(\phi_1, \ldots, \phi_m \) is a basis and \(V \) is \(n \)-dimensional then \(m = n \).

(ii) \(\Rightarrow \) (i)

If we have an orthonormal system with \(n \) vectors, \(\phi_1, \ldots, \phi_n \) in an \(n \)-dimensional space, we can start with 1 basis \(\phi, \ldots, \phi_3 \) and use the replacement trick to show \(\phi_1, \ldots, \phi_m \) is a basis.

So if \(x = a_1 \phi_1 + \cdots + a_m \phi_m \). Then \(\langle \phi_k, x \rangle = 0 \) for all \(k \).

\[\therefore a_k = 0 \quad \Rightarrow \quad x = 0 \].

Continued on Page

Read and Understood By

Signed

Date

Signed

Date
So \((i) \implies \text{ completeness}\)

\[
\text{So completeness, (i) } \& \text{ (ii) are equivalent.}
\]

Once more assume completeness \(\mathcal{V}\) the orthonormal system \(\{\Phi_1, \ldots, \Phi_m\}\)

Consider \(x, y \in \mathcal{V}\)

\[
x = \sum_{k=1}^{m} \langle \Phi_k, x \rangle \Phi_k
\]

\[
y = \sum_{k=1}^{m} \langle \Phi_k, y \rangle \Phi_k
\]

\[
\langle x, y \rangle = \left\langle \sum_{k=1}^{m} \langle \Phi_k, x \rangle \Phi_k, \sum_{k=1}^{m} \langle \Phi_k, y \rangle \Phi_k \right\rangle
\]

\[
= \sum_{k=1}^{m} \langle \Phi_k, x \rangle \left\langle \Phi_k, y \right\rangle
\]

\[
= \sum_{k=1}^{m} \langle \Phi_k, x \rangle \langle \Phi_k, y \rangle
\]

\[
= \sum_{k=1}^{m} \langle x, \Phi_k \rangle \langle y, \Phi_k \rangle
\]

So completeness \(\iff (iv)\)

If we \(\Phi_k\) have

\[
\langle x, y \rangle = \sum_{k=1}^{m} \langle x, \Phi_k \rangle \langle \Phi_k, y \rangle
\]

Then, setting, \(y = x\)

\[
\|x\|^2 = \sum_{k=1}^{m} \langle x, \Phi_k \rangle \langle \Phi_k, x \rangle
\]

So \((iv) \implies (iii)\)
Now assume \(\|x\|^2 = \sum_{k=1}^{m} |\langle \phi_k, x \rangle|^2 \) for any \(x + y \).

If \(\langle \phi_k, x \rangle = 0 \) for all \(k \),

\[\|x\|^2 = 0 \quad \Rightarrow \quad x = 0 \]

Hence \(\phi_1, \ldots, \phi_m \) is a complete orthonormal system.

So, (iii) \(\Rightarrow \) Completeness

(iii) \(\Rightarrow \) Completeness \(\Rightarrow \) (ii) \(\Rightarrow \) (i)

Thus, all the statements are equivalent.

Note that if we have a finite dimensional vector space, we have a basis with \(n \) vectors. We can then form an orthonormal basis with \(n \) vectors by the Gram-Schmidt orthogonalization process.
Def: Direct sum of two vector spaces U and V over the same field F could be constructed as follows.

The direct sum $U \oplus V$ consists of ordered pairs (u, v) with $u \in U$, $v \in V$, with addition defined by $(u_1, v_1) + (u_2, v_2) = (u_1 + u_2, v_1 + v_2)$ and scalar multiple defined by $a \cdot (u, v) = (au, av)$ for $a \in F$. One can show $U \oplus V$ is a vector space.

Def: Sum of vector subspaces M_1, M_2 of vector space V is defined as

$M_1 + M_2 = \{ x_1 + x_2 | x_1 \in M_1, x_2 \in M_2 \}$.

One can easily show $M_1 + M_2$ is a vector space.

Under some conditions $M_1 + M_2$ is equivalent to $M_1 \oplus M_2$, but these vector spaces are not equivalent in general. The equivalence has to be defined carefully.

(Later!)

One condition of equality is that $M_1 \cap M_2 = \{0\}$.
Def: For vector space V and a subspace M, the orthogonal complement M^\perp is defined as $\{x \in V | \langle x, y \rangle = 0 \text{ for all } y \in M \}$.

One can show M^\perp is a subspace.

Ob 1

$M \cap M^\perp = \{0\}$

If $x \in M$ and $x + M^\perp$ \[\langle x, x \rangle = 0\]

$\Rightarrow 1 \times 1 = 0 \Rightarrow x = 0.$

(Proof)

Then if V is finite dimensional

$M + M^\perp = V$

If V is finite dimensional then M is finite dimensional. Otherwise, choose a maximal set I of linearly independent vectors in M. I would be linearly independent in V. Then it cannot have more than $\dim(V)$ elements. So $\dim(M) \leq \dim(V)$.
Now, say \(\dim(M) = m \) and \(\{\phi_1, \cdots, \phi_m\} \)

is an orthonormal basis of \(M \).

For any \(x \in V \), call \(\sum_{k=1}^{m} \langle \phi_k, x \rangle \phi_k = x' \)

the projection of \(x \) to \(M \). Note that

\[\langle x - x', \phi_k \rangle = 0 \quad \text{for all} \; k. \]

Since any \(y \in M \) is a linear combination of \(\phi_k \) s

\[\langle x - x', y \rangle = 0 \quad \text{for all} \; y \in M \]

So \(x - x' = x'' \in M^\perp \)

Hence any \(x \in V \) can be written as

\(x = x' + x'' \) with \(x' \in M \) and \(x'' \in M^\perp \)

So \(M + M^\perp = V \) \(\quad \text{QED} \)

Obs: Since \(MM^\perp = 0 \)

\(M + M^\perp \) is 'equivalent' to \(M \oplus M^\perp \)
We will discuss Product Spaces when we return later.

Sequences of vectors \(\{x_n\} = (x_1, x_2, \ldots) \) with \(x_n \in V \), generalizes our earlier definition on \(\mathbb{R}^k \).

For a normed vector space \(V \), we could define the convergence of sequences, or Cauchy sequences just by realizing \(\mathbb{R}^k \) is one particular norm.

Convergence of \(\{x_n\} \to x \) for vectors means for any \(\varepsilon > 0 \), there is an \(N \in \mathbb{N} \) s.t. \(n > N \) implies \(\|x_n - x\| < \varepsilon \).

The sequence \(\{x_n\} \) being Cauchy means for any \(\varepsilon > 0 \), there is an \(N \in \mathbb{N} \) s.t. \(m, n > N \) implies \(\|x_m - x_n\| < \varepsilon \).

For \(\mathbb{R}^k \) or \(\mathbb{C}^n \), these properties are equivalent to some properties for their components. In finite dimensional spaces open up more interesting possibilities.