The Metric Tensor

Def. A smooth n-dimensional manifold \(M \) endowed with a smooth \((0,2)\) non-degenerate symmetric tensor field \(g \) is called a pseudo-Riemannian manifold. The tensor field \(g \) is called the metric tensor.

At any point \(p \in M \) if \(u, v \in T_p M \) we can compute a number \(g(p, u, v) \) which is a scalar product. In components, it looks like \(g_{ij} v^i v^j \). Note that

\[u \rightarrow g_p(u, v) : \bar{v} \text{ is a map from } T_p M \text{ to } T^*_p M \]

In components \(u^i \rightarrow \bar{v}^i = g_{ij} u^j \) (note lowering).

Non-degenerate \(g \) means this map is invertible.

We have \(\bar{g}_p : T^*_p M \rightarrow T_p M \)

\[\bar{g}^{jk} g_{kl} = \delta^j_k \quad \Rightarrow \quad \omega \rightarrow \bar{g}(\omega, \omega) \text{non-degenerate \(\Rightarrow \) \(\omega \), } \omega \bar{g} \text{ is invertible} \]

\(g \) is a symmetric matrix with non-zero eigenvalues. If it has \(p \) positive and \(q \) negative eigenvalues, then \(\text{signature of } g \) is \((p, q)\).
Metric Tensor and Distance

In Relativity theory, we deal with signatures like (1, 3). However, in this section, we focus on (0, 0) signature.

Def: If $g(u, u) \geq 0$ and $g(u, u) = 0$ implies $u = 0$, then g is positive definite metric. A smooth manifold with a smooth positive definite metric is a smooth Riemannian manifold.

Now imagine you have a smooth curve on the manifold $\gamma: I \to M$ with $I = [a, b]$. At every point on the curve, we have a tangent vector. At point $\gamma(t)$, for $t \in I$, there is a vector $\gamma'(t) \in T_{\gamma(t)} M$. For this curve,

\[l(\gamma) = \int_a^b \sqrt{g(\gamma'(t), \gamma'(t))} \, dt \]

We defined its length. If we describe the curve by $x^i = x^i(t)$,

\[l(\gamma) = \int_a^b \sqrt{g_{ij}(\gamma'(t)) \frac{dx^i}{dt} \frac{dx^j}{dt}} \, dt \]
In textbooks talking about infinitesimal arc lengths, we say
\[ds^2 = g_{ij} \, dx^i dx^j. \]

This is a rather useful tool for building intuition and we will gladly use it.

We could define \(s(a) = \int_a^1 \sqrt{g(\vec{x}(u), \vec{x}(u))} \, du \),
along the curve and show
\[\left(\frac{ds}{du} \right)^2 = g_{ij} \frac{dx^i}{du} \frac{dx^j}{du}, \]
which is a rigorous statement. This statement, depends on a parametrization, though.

Example: 1) Two-dimensional plane, \(\mathbb{R}^2 \):
\[ds^2 = dx^2 + dy^2 \quad \text{Cartesian} \]
\[= dr^2 + r^2 d\theta^2 \quad \text{Polar} \]

2) \(\mathbb{R}^3 \):
\[ds^2 = dx^2 + dy^2 + dz^2 \]
\[= dr^2 + r^2 (d\theta^2 + \sin^2 \theta \, d\phi^2) \]

3) \(S^2 \):
\[ds^2 = d\theta^2 + \sin^2 \theta \, d\phi^2 \]
Unit sphere
Metric Tensor and a Volume Form.

When we change coordinates:

\[g_{jk} \text{ transforms to } g'_{mn} = \frac{\partial x^i}{\partial x^m} \frac{\partial x^k}{\partial x^n} g_{jk} \]

\[J^m_n = \frac{\partial x^m}{\partial x^n} \]

So \(\det(g') = \det(g) \left[\det(J) \right]^{-2} \)

Note that \(dx^1 \wedge \ldots \wedge dx^n = \frac{\partial x^1}{\partial x^i} \ldots \frac{\partial x^n}{\partial x^n} dx^1 \wedge \ldots \wedge dx^n \)

\[= \det(J) \; dx^1 \wedge \ldots \wedge dx^n \]

So \(\sqrt{\det(g)} \; dx^1 \wedge \ldots \wedge dx^n \) is invariant under transformation.

For pseudo Riemannian metrics one often defines \(\sqrt{\det(g)} \; dx^1 \wedge \ldots \wedge dx^n \) as the volume element.

For the same reason anywhere in a connected part of \(M \).
The Laplacian operator

\[\nabla^{2}(x) = \nabla(x) \cdot \nabla = -\Delta x^{n} \]

g

Now consider a contravariant vector associated with gradient of a function: \(\mathbf{\nabla} f = \mathbf{\nabla} f \cdot \mathbf{f} \)

In components, \((\mathbf{\nabla} f)^{y} = g^{jk} \frac{\partial f}{\partial x^{k}} \)

* \(\mathbf{\nabla} f \in \Lambda^{n-1}(\mathbf{M}) \),
* \(d \mathbf{\nabla} f \in \Lambda^{n}(\mathbf{M}) \)

\(d \mathbf{\nabla} f \) is an \(n \)-form, \(\star d \mathbf{\nabla} f \) is back to \(\Lambda^{0}(\mathbf{M}) \)

\(\mathbf{\Delta} f = \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x^{j}} \)

\[\begin{align*}
\Rightarrow \quad \mathbf{\Delta} f &= \sum_{j=1}^{n} \frac{1}{\sqrt{\text{det}(g)}} \frac{\partial}{\partial x^{j}} \left(\sqrt{\text{det}(g)} g^{jk} \frac{\partial f}{\partial x^{k}} \right) \\
&= \frac{1}{\sqrt{\text{det}(g)}} \frac{\partial}{\partial x^{j}} \left(\sqrt{\text{det}(g)} g^{jk} \frac{\partial f}{\partial x^{k}} \right)
\end{align*} \]

So we define, \(\mathbf{\Delta} f = \star d \mathbf{\nabla} f \) to be the Laplacian

Example: \(\mathbf{\Delta} s^{2} = d\mathbf{l}^{2} + 2 \mathbf{\dot{r}} \mathbf{\cdot} \mathbf{\dot{r}} + r^{2} \sin^{2} \mathbf{\theta} \)

\(\text{det}(g) = r^{4} \sin^{2} \mathbf{\theta} \)
\[\Delta = \frac{1}{r^2 \sin \theta} \left[\frac{\partial}{\partial r} r^2 \sin \theta \frac{2}{r} + \frac{\partial}{\partial \theta} r^2 \sin \theta \frac{2}{r^2 \theta} + \frac{\partial}{\partial \phi} r^2 \sin \theta \frac{2}{r^2 \sin \theta} \frac{2}{\partial \phi} \right] \]

Since \[\bar{g} = \left(\begin{array}{c} 1 \\ \frac{1}{r^2} \frac{1}{\sin \theta} \end{array} \right) \]

\[\Delta = \frac{1}{r^2} \frac{\partial^2}{\partial r^2} r^2 \frac{2}{r} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{2}{\partial \theta} \]

\[+ \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \]

Of course, in the Cartesian system:

\[\bar{g} = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \quad \bar{s} = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \quad \text{So} \]

\[\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \]
Geodesic curve on a manifold

\[l = \int_a^b \sqrt{\sum_{j<k} g_{jk} \frac{dx^j}{dx^k} \frac{dx^j}{dx^k}} \, dx = \int_a^b \sqrt{\sigma} \, dx \]

\[\eta^i(a) = \eta^i(b) = 0 \]

\[\frac{d}{dt} \left[\frac{1}{2} \sum_{j<k} g_{jk} \eta^j \eta^k \right] = \frac{d}{dt} \left[\sum_{j<k} g_{jk} \eta^j \frac{d\eta^k}{dt} \right] + \sum_{j<k} g_{jk} \frac{d\eta^j}{dt} \frac{d\eta^k}{dt} \]

\[= \frac{1}{2} \int_a^b \left[\sum_{j<k} \frac{d}{dt} \left(g_{jk} \eta^j \frac{d\eta^k}{dt} \right) + \frac{d}{dt} \left(\sum_{j<k} g_{jk} \frac{d\eta^j}{dt} \frac{d\eta^k}{dt} \right) \right] \, dx \]

\[= \int_a^b \left[\frac{1}{2} \frac{d}{dt} \left(\sum_{j<k} g_{jk} \frac{d\eta^j}{dt} \frac{d\eta^k}{dt} \right) - \frac{1}{2} \frac{d}{dt} \left(\sum_{j<k} g_{jk} \frac{d\eta^j}{dt} \frac{d\eta^k}{dt} \right) \right] \eta^m \, dx \]

\[= \int_a^b \left[\frac{1}{2} \frac{d}{dt} \sum_{j<k} g_{jk} \frac{d\eta^j}{dt} \frac{d\eta^k}{dt} \right] \eta^m \, dx \]

Read and Understood By
We can plug in $\sigma = g_{jk} \frac{dx^j}{d\lambda} \frac{dx^k}{d\lambda}$ and push on (the book does). We should realize $L(\gamma)$ does not depend on the parametrization.

If we go from $x^i(\lambda)$ to $x^i(\lambda') = \tilde{x}^i(\mu)$, this will also be a solution. To fix this degeneracy, we define ds to be \sqrt{g}.

So S is the arc length.

$$\frac{dl}{d\lambda} = -\int \left[\frac{d}{ds} \left(g_{jm} \frac{dx^j}{ds} \right) - \frac{1}{2} \frac{d}{ds} \frac{dx^j}{ds} \frac{dx^k}{ds} \frac{1}{\sqrt{g}} \gamma_{jm} \gamma_{kn} \right] \sqrt{g} d\lambda$$

Since γ_{jm} is arbitrary,

$$\frac{d}{ds} \left(g_{jm} \frac{dx^j}{ds} \right) - \frac{1}{2} \frac{d}{ds} \frac{dx^j}{ds} \frac{dx^k}{ds} = 0$$

$$g_{jm} \frac{d^2 x^j}{ds^2} + \left(\frac{d}{ds} \left(g_{jm} \frac{dx^j}{ds} \right) - \frac{1}{2} \frac{d}{ds} \frac{dx^j}{ds} \frac{dx^k}{ds} \frac{1}{\sqrt{g}} \gamma_{jm} \gamma_{kn} \right) \frac{d}{ds} \frac{dx^j}{ds} \frac{dx^k}{ds} = 0$$

$$g_{jm} \frac{d^2 x^j}{ds^2} + \Gamma_{jm} \frac{dx^i}{ds} \frac{dx^k}{ds} = 0$$
\[\Gamma_{mijk} \] are Christoffel symbols (of the 1st kind).

\[\Gamma_{mijk} = \frac{1}{2} \left(\frac{\partial g_{mj}}{\partial x^k} + \frac{\partial g_{mk}}{\partial x^j} - \frac{\partial g_{jk}}{\partial x^m} \right) \]

Use \(g^{im} \) to raise indices with \(\Gamma^i_{jk} = g^{im} \Gamma_{mijk} \) (Christoffel Symbols of the 2nd kind).

\[\frac{d^2 x^i}{ds^2} + \Gamma^i_{jk} \frac{dx^j}{ds} \frac{dx^k}{ds} = 0. \]

We have the Christ \(g_{ik} \frac{dx^i}{ds} \frac{dx^k}{ds} = 1 \) satisfied.

\(\Gamma^i_{jk} \) is associated with connections and parallel transport, allowing comparison of vectors in neighboring tangent spaces.

Example: \(S^2 \):

\[g_{\theta \theta} = 1, \quad g_{\phi \phi} = \sin^2 \Theta \]

Only nontrivial derivative:

\[\frac{\partial g_{\phi \phi}}{\partial \Theta} = 2 \sin \Theta \cos \Theta \]

So

\[\Gamma^\phi_{\Theta \phi \Theta} = \frac{1}{2} \left(\frac{\partial g_{\phi \phi}}{\partial \Theta} \right) = -\sin \Theta \cos \Theta \]

\[\Gamma^\phi_{\Theta \phi \Theta} = \Gamma^\phi_{\Theta \phi \Theta} = \frac{1}{2} \left(\frac{\partial g_{\phi \phi}}{\partial \Theta} \right) = \sin \Theta \cos \Theta \]

\[\Gamma^\phi_{\Theta \phi \Theta} = \Gamma^\phi_{\Theta \phi \Theta} = \frac{1}{2} \left(\frac{\partial g_{\phi \phi}}{\partial \Theta} \right) = \sin \Theta \cos \Theta \]

Continued on Page
So the equations are
\[\frac{d\theta}{ds^2} + R \frac{d}{ds} \left(\frac{d\phi}{ds} \right)^2 = 0, \quad \text{and} \quad \frac{d\phi}{ds^2} + 2 \frac{d}{ds} \frac{d\phi}{ds} \frac{d\theta}{ds} = 0. \]

Or
\[\dot{\theta} - \sin \phi \cos \theta \dot{\phi}^2 = 0 \quad \text{and} \quad \dot{\phi} + 2 \cos \phi \dot{\theta} \dot{\phi} = 0. \]

Note that if we have \(\phi = 0 \) initially, then \(\theta = \omega \) is a solution.

The solution moves along \(\phi = \) constant lines providing great circles. Since \(\frac{d\theta}{ds} = 1 \)

\[\omega = \pm 1. \]

For general \(\phi \), recast second equation as \(\frac{d}{ds} (\phi \sin^2 \theta) = 0 \)

or \(\frac{d\theta}{ds} = \frac{c}{\sin \theta} \left(\text{"conserved quantity"} \right) = \frac{c^2 \cos \theta}{\sin \theta} = 0 \)

implying

\[\frac{1}{2} \dot{\theta}^2 + \frac{c^2}{2 \sin^2 \theta} = \frac{1}{2} A \quad \text{(like energy)} \]

\(\text{Note that we have} \quad \dot{\theta}^2 + \sin^2 \dot{\phi}^2 = A, \text{which has to be 1.} \)

So \(\dot{\theta}^2 + \frac{c^2}{\sin^2 \theta} = 1 \) and \(\dot{\phi} = \frac{c}{\sin \theta} \quad \rightarrow \quad \frac{d\phi}{d\theta} = \frac{c}{\cos \theta} \quad \rightarrow \quad \frac{d\phi}{d\theta} = \frac{d\phi}{d\theta} \quad \rightarrow \quad \int \frac{d\phi}{\sqrt{1 - c^2 \sin^2 \phi}} = \frac{c}{\sin \theta} \)

\(\int d\phi = \int \frac{c \, du}{\sqrt{1 - c^2 - c^2 u^2}} = \sqrt{\frac{\sin \theta}{\sin \theta}} \quad \rightarrow \quad \int d\phi = \sin^{-1} (c \sin \phi) \quad \rightarrow \quad \phi = \sin^{-1} (c \sin \phi) \)

\(\cos \phi = \sin \phi \cos \theta \quad \text{and} \quad \sin \phi = \sqrt{1 - \sin^2 \phi} \quad \rightarrow \quad \cos \phi = \sqrt{1 - \sin^2 \phi} \cos \theta \quad \rightarrow \quad \cos \phi = \tan \theta \sin (\phi - \phi) \)

\(\sin (\theta - \phi_0) = \frac{\sin \phi \cos \theta}{\sqrt{\sin^2 \phi + \cos^2 \theta}} \quad \rightarrow \quad \cos \theta = \tan \theta \sin (\phi - \phi_0) \)

Signed: [Signature]

Signed: [Signature]

Date: [Date]