Course 406, Midterm I, 02/28/2019

Problem 1. (3 points)

Consider a 2D crystal with the in-plane dimensions $1 \times 1 \mu m^2$ and the speed of sound $c = 3,000 m/s$. Assume that only the phonon modes with $\hbar \omega < k_B T$ are excited. How many longitudinal modes are excited in this crystal at $T = 1K$?

Each mode in the k-space occupies the area $\frac{(2\pi)^2}{1 \times 1 \mu m^2}$

Maximum k_{max} that corresponds to the condition $\hbar \omega_{max} = k_B T$ is $k_{max} = \frac{k_B T}{\hbar c}$

The total number of modes within the circle of radius k_{max} is

$$N = \frac{\pi k_{max}^2}{(2\pi)^2} = \frac{(k_B T)^2}{\hbar c} \frac{1}{4\pi} (1 \times 1 \mu m^2) = 157$$
Problem 2. The phonon spectrum of a 2D crystal is shown in the Figure (consider just one acoustic and one optical branches of the spectrum).

(a) (2 points) Estimate the sound velocity for \(k \) far away from the boundary of the Brillouin zone. \(1 \) THz = \(10^{12} \) Hz.

\[
c = \frac{\omega}{k} = \frac{2\pi \times 25 \times 10^{12}}{3 \times 10^{10}} = 5.2 \text{ km/s}
\]

(b) (2 points) What is the occupancy (the average number of phonons) of the acoustic mode with \(f = 5 \) THz at \(T = 30 K \)?

\[
\langle n \rangle = \frac{1}{e^{\hbar \omega / k_B T} - 1} = \frac{1}{e^{\hbar \omega / k_B T} - 1} \approx 0.00024
\]

(c) Consider the energy dependence of the phonon density of states \(g_{2D}(\epsilon) \) for this crystal.

(2 points) What is the asymptotic behavior of \(g_{2D}(\epsilon) \) for the acoustic branch near the center of the Brillouin zone?

(3 points) What is the asymptotic behavior of \(g_{2D}(\epsilon) \) for the optical branch near the center of the Brillouin zone?

Hint: approximate the optical branch near the center of the Brillouin zone as \((\epsilon_{\text{max}} - \epsilon) = A k^2 \).
\[g_{2D}(\varepsilon) = g_{2D}(k) \frac{dk}{d\varepsilon} \quad g_{2D}(k) \propto k \]

The asymptotic behavior of \(g_{2D}(\varepsilon) \) at \(\varepsilon \to 0 \) (the acoustic branch):

The dispersion relation is linear, \(\frac{dk}{d\varepsilon} = \frac{1}{hc} \).

Thus, \(g_{2D}(\varepsilon) \propto \varepsilon \)

The asymptotic behavior of \(g_{2D}(\varepsilon) \) for the optical branch near the center of Brillouin zone:

\[(\varepsilon_{\text{max}} - \varepsilon) = Ak^2 \quad \frac{d\varepsilon}{dk} \propto k \quad g_{2D}(\varepsilon) = \text{const} \]
Problem 3. (3 points) Consider a (hypothetical) 3D metal with a cubic crystal lattice. Using the free electron model, find the number of electrons per atom (could be non-integer) at which the Fermi sphere begins to touch the faces of the first Brillouin zone.

\[k_{3D}(E_F) = (3\pi^2 n)^{1/3} \]
\[k_{3D}(BZ \text{ boundary}) = \frac{\pi}{a} = \frac{\pi}{\sqrt[3]{\frac{1m^3}{N}}} \]
\[3\pi^2 n = \pi^3 N \]
\[\frac{n}{N} = \frac{\pi}{3} \approx 1 \]

\(n \) – the electron density

\(N \) – the atom density
Problem 4.

The plot shows two electron bands in the first Brillouin zone of a 1D metal.

(a) (2 point) Schematically plot the effective electron mass as a function of energy.

(b) (3 points) Estimate the effective mass (in units of the bare electron mass, \(m_e = 9 \times 10^{-31} kg \)) at \(k = 0 \) in the lower band if \(a = 0.3 nm \).

(c) (2 points) Assume that the Fermi energy is 0.3eV. At room temperature (\(T = 300K \)), what is the probability that a state 0.01eV above the Fermi level is occupied by an electron?

\[
\begin{align*}
\text{(b)} & \quad m^* = \frac{\hbar^2}{2m_e} \left[\frac{\partial^2 \varepsilon_f(k)}{\partial k^2} \right]^{-1} \quad E = \frac{(\hbar k)^2}{2m^*} \\
& \quad m^* \approx \frac{(\hbar k)^2}{2E} = 3.8m_e \\
\text{(c)} & \quad f(\varepsilon) = \frac{1}{1 + e^{\frac{\varepsilon-E_F}{k_BT}}} = \frac{1}{1 + e^{\frac{0.01eV}{0.026eV}}} = 0.4
\end{align*}
\]
Problem 5 (3 points).

Consider a 2D square crystal lattice with a unit cell size a. There are two electrons per unit cell. Assume that the electron dispersion relation looks like $\varepsilon(k) = 1eV \sin\left(\frac{ak}{2}\right)$ along direction 1 and $\varepsilon(k) = 1.5eV \sin\left(\frac{ak}{2\sqrt{2}}\right)$ along direction 2 in the k-space. Find the minimal band gap along direction 1 required for this crystal to be an insulator. Provide essential plots and explanations.

The crystal is an insulator (i.e. not a metal) if the bottom of the second band in direction 1 is higher than the top of the first band in direction 2. Thus, the minimal gap is 0.5 eV.