Electric Field Effect and FETs

- Electric Field Effect
- MOSFETs: band structure, depletion and inversion
- Long-channel MOSFETs

The Electric Field Effect

\[E = \frac{V}{d_{\text{ox}}} \]

\[en_{2D} = \varepsilon\varepsilon_0 E \quad n_{2D} = \frac{1}{e} \frac{4\pi\varepsilon\varepsilon_0}{4\pi} E \sim (10^8 - 10^9)E \]

Maximum \(E \) is limited by the dielectric breakdown (~\(10^9 V/m \) for \(\text{SiO}_2 \), up to \(10^{10} V/m \) for ionic gel gating)

(for comparison, \(\frac{e}{4\pi\varepsilon_0 a_B^2} \sim 10^{11} V/m \)).

\[n_{2D}^{\text{max}} \sim 10^{19} \text{ m}^{-2} \text{ (conventional dielectrics)} \]

\[10^{20} \text{ m}^{-2} \text{ (ion gel).} \]

Electron concentration in a 1-nm-thick copper:

\[10^{29} \text{ m}^{-3} \times 10^{-9} \text{ m} = 10^{20} \text{ m}^{-2} \]

- the field effect is insignificant.

The situation is quite different in semi-metals and semiconductors.

Limitation of the ionic gel technique:
- cannot vary \(n_{2D} \) in-situ below the gel freezing \(T \sim 200 K \);
- polarization of the ionic gel is a slow (~1s) process.

The Field Effect (cont’d)

General Idea:

- to fabricate an artificial 2D system at the interface between the gate dielectric and a semiconductor/insulator with the charge density controlled by the gate;
- to study the charge transport in the system.

New states of matter can be explored with the field effect.

If the drain-source voltage V_{DS} is small in comparison with the gate-source voltage V_{GS}, the charge carrier concentration is uniform along the channel.

Provided all V_{GS} is applied btw the gate and the channel:

\[
\frac{n_{2D}}{e} = \frac{C_{di} (V_{GS} - V_T)}{-e}
\]

C_{di} is the gate dielectric capacitance per unit area.

More accurately, taking into account the voltage divider C_{di}, C_{sc}:

\[
n_{2D} = \frac{\frac{C_{di} C_{sc}}{C_{di} + C_{sc}} (V_{GS} - V_T)}{-e}
\]

C_{SC} - the semiconductor space-charge capacitance

V_T - the threshold voltage. It is proportional to the density of charge traps at the $Si-SiO_2$ interface. There are no mobile charges in the channel unless V_{GS} is greater than V_T. The early history of MOSFET development was the struggle to reduce V_T.

Why Si? Because the processes of elimination of charge traps in the bulk of thermally grown SiO_2 and at the the $Si - SiO_2$ interface have been developed.
Early History of Si MOSFETs

Julius Lilienfeld proposed FET, but never constructed a working device...

Martin M. (John) Atalla (1924 – 2009)
Dawon Kahng (1931 – 1992)

Julius E. Lilienfeld (1882 –1963)

Shockley and Brattain attempted to make FET, but failed...

Fred Heiman and Steven Hofstein

Oskar Heil

attributed the failure of Shockley’s efforts to the surface states

D. Kahng, M. Atalla (Bell)
S. Hofstein, F. Heiman (RCA Sarnoff) created practical Si FETs

Michael Riordan & Lillian Hoddeson. “Crystal Fire: The Invention of the Transistor and the Birth of the Information Age”.

Martin M. (John) Atalla (1924 – 2009)
Dawon Kahng (1931 – 1992)
Electric Field Effect

MOSFETs: band structure, depletion and inversion

- Long-channel MOSFETs

- Two types of FETs developed at Rutgers:
 - single-crystal organic FETs (OFETs)
 - transition metal dichalcogenide FETs
We’ll consider just one type of FETs (an n-type Si-based MOSFET). Many more types of FETs exist, both n- and p-type, with inversion and accumulation channels, “normally-on” and “normally-off”, inorganic and organic, etc.
Let’s first consider the case when the gate and the semiconductor are electrically isolated.

The holes are primary carriers in the p-doped Si

Chemical potentials are not aligned yet.
The gate and the semiconductor are electrically isolated.

The gate and the semiconductor are electrically connected $V_{GS} = 0$.

To line up chemical potentials, charges are redistributed through an external circuit. As the result (a) the bands bend near the $Si - SiO_2$ interface, (b) the region near the interface is depleted of holes, primary carriers in the p-doped Si.

The total built-in voltage $V_{bi} = \frac{1}{e} |\Phi_G - \Phi_S|$ where Φ_G and Φ_S are the work functions of the gate and semiconductor, respectively. This voltage drops across the oxide and the depletion region.
nMOSFET band diagram (from Gate to Channel) $V_{GS} \neq 0$

Minority Carriers (electrons) form an inversion layer at the $Si - SiO_2$ interface.
Figure 1.5 Normalized total semiconductor charge per unit area versus normalized surface potential for p-type Si with \(N_e = 10^{16} \text{cm}^{-3} \), \(Q_{th} = (2e_q N_e V_{th})^{1/2} \approx 9.3 \times 10^{-9} \text{C/cm}^2 \) and \(V_{th} \approx 0.026 \text{V} \) at \(T = 300 \text{K} \). The arrows indicate flat-band condition and onset of strong inversion.

\[
\begin{align*}
C_{di} & - \text{the gate dielectric capacitance} \\
C_{SC} & - \text{the semiconductor space-charge capacitance} \\
C_{IT} & - \text{the interface trap capacitance}
\end{align*}
\]
MOSFET: degenerate or non-degenerate?

Operation at 300K – we need to compare \(k_B T \) with \(E_F(n_{2D}) \).

\[
n_{2D} = \frac{\varepsilon \varepsilon_0}{e t_{ox}} V = (\varepsilon = 4, t_{ox} = 2nm, V = 0.8V) = 8 \times 10^{16} m^{-2}
\]

\[
E_F(n_{2D}) = \frac{\hbar^2}{m^*} \pi n_{2D} \quad m^* = 0.2m_e
\]

\(n_{2D} = 10^{16} m^{-2}, \quad E_F(n_{2D}) \approx 100K \) - non-degenerate Fermi gas

\(n_{2D} = 10^{17} m^{-2}, \quad E_F(n_{2D}) \approx 1000K \) - (almost) degenerate Fermi gas
Electric Field Effect

MOSFETs: band structure, depletion and inversion

Long-channel MOSFETs

Two types of FETs developed at Rutgers:
- single-crystal organic FETs (OFETs)
- transition metal dichalcogenide FETs
Field-Effect Transistor (FET) geometry
MOSFET Current-Voltage Characteristics and Modes of Operation

Analog applications
MOSFETS as amplifiers

Digital applications
MOSFETS as switches

\[V_{DS} = V_{GS} - V_T \]

I_{SD} (arb. units) vs. V_{SD} (V)

- **Subthreshold regime**
 \[V_{GS} < V_T \]

- **“Linear” regime**
- **Saturation regime**
The Linear Regime

- describes the MOSFET behavior for small V_{DS}, where the MOSFET acts as a variable resistor. μ, n_{2D}, E_{DS} are considered constant along the channel.

$$E_{DS} = \frac{V_{DS}}{L} \quad n_{2D} = \frac{C_{di}(V_{GS} - V_T)}{-e} \quad |V_{DS}| \ll (V_{GS} - V_T)$$

C_{di} is the gate dielectric capacitance per unit area.

$$j_{DS} = (-en_{2D}\mu)E_{DS} = -e \frac{C_{di}(V_{GS} - V_T)}{-e} \mu \frac{V_{DS}}{\sigma_{2D}}$$

$$I_{DS} = Wj_{DS} = \mu C_{di}(V_{GS} - V_T) \frac{W}{L} V_{DS}$$

To increase I_{DS}, we need higher mobility and lower V_T. Greater C_{di} (i.e. larger n_{2D}) also helps, though the RC time constant increases (not good, lower operation frequencies).
The Drain Current Saturation Regime

For larger V_{DS} comparable with $V_{GS} - V_T$ we have to take into account variations of n_{2D} along the channel. The guiding principle – the continuity equation, j_{DS} is the same in any cross section.

$$j_{DS}(x) = (-en_{2D} \mu)E(x) = \mu C_{di} (V_{GS} - V_T - V(x)) \frac{dV(x)}{dx}$$

$$j_{DS}(x) = j_{DS} = \text{const}$$

$$\int_0^L j_{DS} dx = \mu C_{di} \int_0^{V_{DS}} (V_{GS} - V_T - V(x)) \frac{dV(x)}{dx} dx$$

$$j_{DS}L = \mu C_{di} \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

$$I_{DS} = \mu C_{di} \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

I_{SD} increases linearly for small V_{DS}, but then reaches a maximum when n_{2D} becomes zero at the drain end of the channel. Holes are separated from the channel by the depletion layer and cannot contribute to I_{SD}. I_{SD} saturates and the depletion layer near the drain end of the channel accommodates the “excessive” V_{DS}.

$$I_{DS,sat} = \mu C_{di} \frac{W}{L} \frac{(V_{GS} - V_T)^2}{2} \quad V_{DS} > V_{GS} - V_T$$
The Quadratic Model, Drain Current Saturation (cont’d)

The characteristics of an ideal FET.

OFF state - $V_{GS} < V_T$.

ON state - $V_{DS} > V_{DS}^{sat}$, saturation regime.

Saturation regime is of primary importance for digital applications, where the output current of a FET should only depend on the input (gate) voltage and not on V_{DS}.

In the pinch-off regime, E at the source is independent of V_{DS}. I_{DS} also becomes independent of V_{DS} (continuity equation).
Desirable FET Characteristics

- Small V_T and $V_{ON} - V_{OFF}$ (steep subthreshold slope) \Rightarrow small energy dissipation

- **ON/OFF current ratio** $> 10^4$ \Rightarrow heating minimization in the OFF regime, small energy dissipation

- Well-defined saturation regime
- Electric Field Effect
- MOSFETs: band structure, depletion and inversion
- Long-channel MOSFETs

- Two types of FETs developed at Rutgers:
 - single-crystal organic FETs (OFETs)
 - transition metal dichalcogenide FETs
Single-Crystal Organic FETs

- **Si, Ge, GaAs**
 - Strong covalent bonding
 - Large (~ 10 eV) bandwidth
 - High mobility of electrons and holes, $\mu \sim 1000$ cm2/Vs

- **Conjugated polymers and small-molecule organic semiconductors**
 - Weak van der Waals bonding
 - Narrow (~ 0.1 eV) bandwidth
 - Low mobility of carriers, $\mu \sim 0.1 - 10$ cm2/Vs

Wanted: flexibility + reasonably high μ
Single-Crystal Organic FETs (cont’d)

Organic FETs work in the *accumulation* regime. Van-der-Waals bonding between the molecules – *low density of surface traps*.

Mobility – up to 20 cm2/Vs, 10 times greater than in the best organic TFTs and α-Si:H MOSFETs, is *independent* of V_{GS} (i.e. n) and V_{DS} (i.e. E) - in contrast to the polymer and α-Si:H TFTs. Most importantly, this is the intrinsic (not trap-limited) μ.

On/off ratio – up to 10^7

Sub-threshold slope – 10 times better than in organic TFTs and α-Si:H MOSFETs.

These results have been recognized by Scientific American as one of the major contribution to the development of flexible electronics in 2005.

World’s fastest organic transistors, Rutgers 2003
Single-crystal Organic Semiconductor *Rubrene* \((C_{42}H_{28})\): the intrinsic (defect-free) mobility

H.H. Choi,... V. Podzorov. Critical assessment of charge mobility extraction in FETs.
FETs based on *Layered* Inorganic Semiconductors

<table>
<thead>
<tr>
<th>strong covalent/ionic bonds</th>
<th>weak van der Waals bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>high mobility,</td>
<td>low mobility,</td>
</tr>
<tr>
<td>lots of surface states</td>
<td>few surface states</td>
</tr>
</tbody>
</table>

Transition Metal Dichalcogenides - MX_2, where M stands for a transition metal and X - for Se, S or Te. Layered semiconducting TMDs – an ideal FET material, “the best of both worlds”: covalent/ionic bonding within the layers \equiv high mobility, + weak van der Waals interlayer bonding \equiv no dangling bonds, low V_T

$$\mu_p \ (300K) \sim 500 \ cm^2/Vs$$
- comparable or even better than the RT mobility of electrons in commercial Si MOSFETs