1. A crystal is opaque for light with wavelengths $\lambda < 413$ nm. For longer wavelengths it is transparent. Determine the band gap of the crystal in eV.

$$E_g = \frac{1.24}{0.413} \times 1 \text{ eV} = 3 \text{ eV}$$

4 eV \Rightarrow 1.24 μm

2. Consider a symmetric pn junction formed by joining a p-doped and an n-doped pieces of Si on the left and right, respectively (see the drawing). The width of the depletion region is $W = 1.4 \mu$m. It is known that the net potential barrier across the depletion region (that is, on going from left to right) is $\Delta V = 0.6 \text{ V}$. Find the built-in electric field (in the units of V/m) exactly at the junction (that is, at the interface).

$$W = x_2 - x_1$$

$$E(x) = \begin{cases}
-E_0 \cdot \frac{x}{x_1} + E_0, & x_1 < x < 0 \\
-E_0 \cdot \frac{x}{x_2} + E_0, & 0 < x < x_2
\end{cases}$$

$$E(x) = 0 \text{ elsewhere}$$

$$\Delta V = \int_{x_1}^{x_2} E(x) \, dx = \int_{x_1}^{x_2} \left(-\frac{E_0}{x_1} \cdot x + E_0\right) \, dx = \frac{E_0}{2} (x_2 - x_1) = \Delta V, \Rightarrow E_0 = \frac{2 \Delta V}{W} = \frac{0.857 \text{ MV}}{\text{m}}$$

3. Assume that a pn-junction diode is described by W. Shockley's equation relating the current through the diode, I, with the voltage applied across the diode, V. The saturation current of the diode (that is, the current flowing in reverse biasing polarity) is known: $I_{sat} = 1 \mu A$ (at room temperature). Calculate the current that would flow through the diode in the forward biasing polarity at $V = 0.1 \text{ V}$ (also at room temperature).

Shockley's diode equation:

$$I = I_{sat} \cdot \left(e^{\frac{eV}{kT}} - 1\right),$$

where

$\text{If}_{\text{sat}} = 1 \mu A$, kT at room temperature is 0.026 eV.

Thus, $I = 1 \mu A \cdot (e^{\frac{0.1 \text{ eV}}{0.026 \text{ eV}}} - 1) = 45.8 \mu A$.