Due date: April 17

Reading: Chapter 10

1. [4 points] Griffiths 10.3 (Fields, charges and currents from V and A and gauge change).

2. [3 points] Consider the potentials $V(r,t) = 0$ and $A(r,t) = A_0 \hat{y} \sin(kx) \sin(\omega t)$ (representing “standing electromagnetic waves”).

 (a) Show that these potentials obey the Lorentz gauge condition.

 (b) Show that these potentials satisfy the usual equations of motion for the potentials in vacuum, $\nabla^2 A = \frac{1}{c^2} \frac{\partial^2 A}{\partial t^2}$ and $\nabla^2 V = \frac{1}{c^2} \frac{\partial^2 V}{\partial t^2}$, provided that $k = \omega/c$.

 (c) Find $E(r,t)$ and $B(r,t)$.

4. [6 points] Suppose it happens that $J(r,t) = J(r)$ and $\rho(r,t) = \gamma(r)t$ (that is, the current is constant in time and the density is linear in time).

 (a) Show that conservation of total charge $Q = \int \rho \, d\tau$ implies that $\int \gamma(r') \, d\tau' = 0$.

 (b) Write the equations for the retarded potentials in terms of ρ and J and use these to show that A is constant in time and V is linear in time, that is, $V(r,t) = w(r)t$ and $A(r,t) = A(r)$, where

 $$w(r) = \frac{1}{4\pi \epsilon_0} \int \frac{\gamma(r')}{z} \, d\tau'$$

 and

 $$A(r) = \frac{\mu_0}{4\pi} \int \frac{J(r')}{z} \, d\tau'.$$

 Hint: One of these is trivial. For the other you have to notice a fortuitous cancellation of the z in the numerator and denominator of one contribution, and use the result of part (a).

 (c) Using the potentials-to-fields equations, show furthermore that B is constant in time and E is linear in time, with $E(r,t) = -\nabla w(r)t$ and $B(r,t) = \nabla \times A(r)$.

5. [4 points] Griffiths 10.20 (E and B on x-axis for charge on x-axis).