Due date: April 19

Reading: Ch. 12

• Read 12.1.1 to 12.1.3 carefully.
• Read 12.1.4 somewhat less carefully, picking up notation.
• Skim 12.2. (I hope you have seen some of this before.) Be familiar with Eqs. (12.46), (12.49), and (12.59).
• Read 12.3.1 and 12.3.2 carefully. This is the heart of things.
• 12.3.3-5 will not appear on homeworks or exams, but I will discuss in class.

2. [3 points] Griffiths 12.7 (Particle decay experiment).

 Note: In case you missed the point: The remarkable result is that all observers will agree whether E-field or B-fields dominate at a certain time and place, depending on whether $E > cB$ or $E < cB$. In one case, there is a frame that make the fields pure E; in the other case, there is a frame that make the fields pure B.

6. [4 points] Here we derive the Doppler effect for EM waves. Suppose that in frame S there is an electromagnetic wave described by
 \[
 E(x, y, z) = E_0 \cos(kx - \omega t) \hat{y},
 \]
 \[
 B(x, y, z) = \left(\frac{E_0}{c}\right) \cos(kx - \omega t) \hat{z},
 \]
 where $k = \omega/c$. Another frame \mathcal{S} is moving along the $-\hat{x}$ direction at speed v relative to frame S. Show that the wave appears in frame \mathcal{S} as
 \[
 \mathcal{E}(\bar{x}, \bar{y}, \bar{z}) = \bar{E}_0 \cos(k\bar{x} - \bar{\omega} \bar{t}) \hat{y},
 \]
 \[
 \mathcal{B}(\bar{x}, \bar{y}, \bar{z}) = \left(\frac{\bar{E}_0}{c}\right) \cos(k\bar{x} - \bar{\omega} \bar{t}) \hat{z},
 \]
 and find the relations between E_0 and \bar{E}_0, k and \bar{k}, and ω and $\bar{\omega}$. In particular, is the wave red-shifted ($\bar{\omega} < \omega$) or blue-shifted ($\bar{\omega} > \omega$)?