1) Problem 5.1

Since \(\mathbf{v} \times \mathbf{B} \) points upward, and that is also the direction of the force, \(q \) must be positive. To find \(R \), in terms of \(a \) and \(d \), use the pythagorean theorem:

\[
(R - d)^2 + a^2 = R^2 \Rightarrow R^2 - 2Rd + d^2 + a^2 = R^2 \Rightarrow R = \frac{a^2 + d^2}{2d}.
\]

The cyclotron formula then gives

\[
p = qBR = \frac{qB(a^2 + d^2)}{2d}.
\]

2) Problem 5.4

Suppose \(I \) flows counterclockwise (if not, change the sign of the answer). The force on each side is zero; the force on the top is \(IaB = Iak(a/2) = Ika^2/2 \), (pointing upward), and the force on the bottom is \(IaB = -Ika^2/2 \) (also upward). So the net force is \(\mathbf{F} = Ika^2 \hat{z} \).

3) Problem 5.5

(a) \[K = \frac{I}{2\pi a}, \] because the length-perpendicular-to-flow is the circumference.

(b) \[J = \frac{\alpha}{s} \Rightarrow I = \int J \, da = \alpha \int \frac{1}{s} ds \, d\phi = 2\pi \alpha \int ds = 2\pi \alpha a \Rightarrow \alpha = \frac{I}{2\pi a}; J = \frac{I}{2\pi a s}. \]

4)