1. [4 points] Four conducting spheres of equal radii are arranged as shown in a perfect square pattern. We use the notation that Q_i are the total charges on each sphere and V_i are the potentials (referred to infinity as usual).

We start with all the spheres neutral (all Q’s and V’s are zero). Making use of uniqueness and symmetry, what can you say about the charges and potentials on the spheres after each step of the following process? (For example, I give the answer to part (a)).

(a) A charge q is added to sphere 1.
(Answer: $Q_1 = q$, $Q_2 = Q_3 = Q_4 = 0$; and we can’t say much about the V’s except $V_2 = V_3$.)
(b) A wire is temporarily connected between spheres 1 and 3 and then removed.
(c) A wire is temporarily connected between spheres 2 and 3 and then removed.
(d) A wire is temporarily connected between spheres 1 and 4 and then removed.

2. [3 points] This is essentially the second half of Griffiths 3.3 (you did the first half in HW 4.3): Find the general form of a harmonic function with full cylindrical symmetry, i.e., V depends only on s in cylindrical coordinates.

3. [4 points] Consider Earnshaw’s theorem for the case of a positive test charge Q at the origin surrounded by eight fixed positive charges q at $r' = (\pm 1, \pm 1, \pm 1)$, i.e., on the corners of a surrounding cube. It seems like the charge Q should be trapped. However, write a formula for how the potential $V(r)$ coming from the eight corner charges (i.e., ignoring Q) behaves along the x axis, i.e., for $r = (x, 0, 0)$. Then use a calculator or other computational device to report the values of the potential energy $QV(r)$ of the test charge for several small values of x. What do you find? (You can express your results “in units of $Qq/4\pi\epsilon_0$."

5. [5 points] Griffiths 3.10 (line charge above conducting plane).

Check: If you did this right, the total linear surface charge $\lambda_{\text{surf}} = \int_{-\infty}^{\infty} \sigma(y)dy$ induced on the metal surface should turn out to be just $-\lambda$.