1. [3 points] Griffiths 2.43 (capacitance per unit length of concentric cylinders).

2. [4 points] Four conducting spheres of equal radii are arranged as shown in a perfect square pattern. We use the notation that Q_i are the total charges on each sphere and V_i are the potentials (referred to infinity as usual).

We start with all the spheres neutral (all Q’s and V’s are zero). Making use of uniqueness and symmetry, what can you say about the charges and potentials on the spheres after each step of the following process? (For example, I give the answer to part (a)).

(a) A charge q is added to sphere 2. (Answer: $Q_2 = q$, $Q_1 = Q_3 = Q_4 = 0$; and we can’t say much about the V’s except $V_1 = V_4$.)
(b) A wire is temporarily connected between spheres 1 and 2 and then removed.
(c) Next, a charge q (same amount as in step (a)) is added to sphere 3.
(d) Next, a wire is temporarily connected between spheres 3 and 4 and then removed.

3. [4 points] Consider Earnshaw’s theorem for the case of a positive test charge Q at the origin surrounded by eight fixed positive charges q at $r' = (\pm 1, \pm 1, \pm 1)$, i.e., on the corners of a surrounding cube. It seems like the charge Q should be trapped. However, write a formula for how the potential $V(r)$ coming from the eight corner charges (i.e., ignoring Q) behaves along the x axis, i.e., for $r = (x, 0, 0)$. Then use a calculator or other computational device to report the values of the potential energy $QV(r)$ of the test charge for several small values of x. What do you find? (You can express your results “in units of $Qq/4\pi \varepsilon_0$."

4. [4 points] Griffiths 3.7 (force on one of two point charges above conducting plane).

5. [5 points] An infinitely long cylinder of radius a and carrying uniform interior charge density ρ runs parallel to the x direction with its axis lying a distance d above a grounded conducting plane at $z=0$. (Of course, $a < d$.)

(a) Find the potential $V(x, y, z)$ in the region above the conducting plane and outside the cylinder. (Hint: You may use “standard results” for the potential from an infinite line charge.)
(b) Show that the surface charge induced on the conducting plane is $\sigma(x, y) = -a^2 \rho d/(y^2 + d^2)$.