Due date: Wednesday, Sept. 19

Griffiths reading:
- Review 1.2.1-4 and 1.3.1-2, and study 1.3.4 (divergence theorem)
- 2.2.1-2 (Gauss’s Law)
- 1.5 (Delta functions)

1. [4 points] (a) Compute the divergence of \(\mathbf{v}(\mathbf{r}) = 2xz \hat{x} + z^2 \hat{y} + (2yz + x^2) \hat{z} \).
 (b) Check the divergence theorem for \(\mathbf{v}(\mathbf{r}) \), taking the volume \(V \) to be a cubic box with one corner at the origin and the other at (111), i.e., extending over \(0 < x < 1 \), \(0 < y < 1 \), and \(0 < z < 1 \). That is, compute the volume integral of \(\nabla \cdot \mathbf{v} \) and the surface integral of \(\mathbf{v} \cdot \hat{n} \) and check that they agree.

2. [2 points] Compute the divergence of \(\mathbf{v}(\mathbf{r}) = \hat{r}/r^n \) for arbitrary \(n \). (For now, don’t worry about what happens at \(r = 0 \); we will discuss it later.)

3. [4 points] A sphere of radius \(R \) is centered on the origin. The “northern” hemisphere defined by \(z > 0 \) carries a uniform surface charge \(\sigma \), while the “southern” hemisphere carries no charge. Find the electric field at the origin. (Use symmetry to argue that it is enough to calculated \(\hat{z} \cdot \mathbf{E} \), and then compute this by integrating over the hemisphere.)

4. [6 points] An infinitely long line charge of uniform density \(\lambda \) lies along the \(z \) axis, piercing a sphere of radius \(R \) centered on the origin. According to Eq. (2.9), the electric field is then
 \[
 \mathbf{E} = \frac{1}{2\pi \varepsilon_0} \frac{\lambda}{s} \hat{s}
 \]
 in cylindrical coordinates.
 (a) Calculate the electric flux passing out through the surface of the sphere.
 Hint: Show that \(\hat{E} \cdot \hat{r} = \sin \theta \), and then calculate the flux by working in spherical coordinates.
 (b) Does this agree with the expectation based on Gauss’s Law?

5. [4 points] Griffiths 1.44(a-d) and 1.45(a) (evaluate integrals with delta functions).