Problem 1. (25 points)

A cylinder of radius R and length L is aligned and centered on the z axis, and extends from $z=0$ to $z=L$. There is no interior charge and no charge on the end caps, but the cylindrical part of its surface carries a charge $\sigma = Az$.

(a) Find the total charge on the cylinder.

(b) Set up and carry out an integral to find the electric potential V at the center of the end cap at $z=0$.

Hint: You might, or might not, need one of these integrals:

$$\int \frac{du}{\sqrt{u^2 + a^2}} = \ln(u + \sqrt{u^2 + a^2})$$

$$\int \frac{udu}{\sqrt{u^2 + a^2}} = \sqrt{u^2 + a^2}$$

\[|
\begin{align*}
Q &= \left. \left(\int_{z=0}^{z=L} \int_{r=0}^{r=R} \sigma r \, dr \, dz \right) \right|_{s=R} \\
&= 2\pi R \int_{0}^{L} (Az) \, dz \\
&= \pi RL^2
\end{align*}
\]

\[|
\begin{align*}
V(P) &= \frac{1}{4\pi \varepsilon_0} 2\pi R \int_{0}^{L} \frac{\sigma \, dz}{\sqrt{z^2 + R^2}} \\
&= \frac{AR}{2\varepsilon_0} \int_{0}^{L} \frac{z \, dz}{\sqrt{z^2 + R^2}} \\
&= \frac{AR}{2\varepsilon_0} \left(\sqrt{z^2 + R^2} - z \right)_{z=0}^{z=L}
\end{align*}
\]
Problem 2. (25 points)

Three equal point charges q are located at $(a,0,0)$, $(0,a,0)$, and $(0,0,a)$. (The parts of this problem can be done independently.)

(a) Find the electric field (magnitude and direction) at the point (a,a,a).

(b) What was the work done to assemble these three charges by bringing them from infinity?

(c) Find the work done (by you) move a new charge Q from $(0,0,0)$ to (a,a,a).

\[
(a) \quad \vec{E} \text{ at } (a,a,a) \text{ from } (a,0,0) \colon \quad \vec{E} = \frac{q}{4\pi \varepsilon_0 a^2} \hat{r} = \frac{q}{a\sqrt{2}}
\]

\[
\vec{E} = \frac{q}{8\pi \varepsilon_0 a^3} \left(\frac{0}{a} \right) = \frac{q}{8\pi \varepsilon_0 a^2} \left(\hat{x} + \hat{y} + \hat{z} \right)
\]

(b) \quad W = \frac{1}{\text{paires \ } 4\pi \varepsilon_0} \quad 3 \text{ pairs, } \vec{r}_{ij} = a\sqrt{2}

\[
W = \frac{3q^2}{4\pi \varepsilon_0 a}
\]

(c) \quad W = Q \left[V(a,a,a) - V(0,0,0) \right]

\[
V(a,a,a) = \frac{1}{4\pi \varepsilon_0} \left(\frac{1}{12a} + \frac{1}{12a} + \frac{1}{12a} \right) = \frac{3q}{4\pi \varepsilon_0 a} \left(\frac{1}{12} \right)
\]

\[
V(0,0,0) = \frac{3q}{4\pi \varepsilon_0 a} \left(\frac{1}{a} + \frac{1}{a} \right) = \frac{3q}{4\pi \varepsilon_0 a}
\]

\[
W = \frac{3qQ}{4\pi \varepsilon_0 a} \left(\frac{1}{12} - 1 \right)
\]
Problem 3. (25 points)

An infinitely long cylinder of radius a is centered on the z axis and carries a variable internal charge density $\rho(s) = \gamma(3s - 2a)$, where s is the distance from the axis. Using Gauss’s Law, find the electric field, both inside ($s < a$) and outside ($s > a$) the cylinder.

Inside:

\[\int_s E \cdot ds = \frac{1}{\varepsilon_0} Q_{\text{enc}} \]

Left-hand side:

\[LHS = \int_0^s (2\pi s) \gamma (3s - 2a) \, ds \]

\[Q_{\text{enc}} = 2\pi L \gamma \left(s^3 - 5s^2 a + 8a^3 \right) \]

\[E(s) = \frac{\gamma}{\varepsilon_0} s(s-a) \]

So

\[\int E \cdot ds = \frac{1}{\varepsilon_0} 2\pi L \gamma s(s-a) \]

Outside:

\[Q_{\text{enc}} = \int_0^\infty (2\pi s) \gamma (3s^2 - 2a^2) \, ds = 2\pi \gamma a^2 (s-a) = 0 \]

Cylinder is not neutral! \[E(s) = 0 \text{ outside} \]
Problem 4. (25 points)

A sphere of radius R carries a spherically symmetric interior charge density $\rho(r)$ such that the electric field is $E(r) = E_0 \hat{r}$, that is, the magnitude of E is constant inside the sphere. (Assume $\sigma = 0$ on the surface of the sphere and $\rho = 0$ outside.)

(a) Find $\rho(r)$ inside the sphere.

(b) Find $E(r)$ outside the sphere.

(c) Find $V(r)$ both inside and outside the sphere, taking $V(\infty) = 0$.

\[a) \quad \rho = \varepsilon_0 \nabla \cdot \vec{E} = \varepsilon_0 \frac{1}{r^2} \frac{d}{dr} r^2 E_0 = \frac{2 \varepsilon_0 E_0}{r} = \rho \]

\[b) \quad \text{Outside, } \vec{E}(\vec{r}) = \frac{\rho}{4 \pi \varepsilon_0} \frac{1}{r^2} \hat{r} \]

where $Q =$ charge in sphere

\[= 4\pi \int_0^R r^2 \rho(r) dr \]

\[= 4\pi \varepsilon_0 E_0 \int_0^R r^2 dr = 4\pi \varepsilon_0 E_0 R^2 \]

\[\therefore \vec{E}(\vec{r}) = E_0 \frac{R^2}{r^2} \hat{r} \]

(An important note: This is not σ at R, so expect $E_{in}(r=R) = E_{out}(r=R)$; yes, both $= E_0$.)

\[c) \]

\[r>R: \quad V(r) = -\int_{-\infty}^{r} \vec{E} \cdot d\vec{l} = \int_{r}^{\infty} \vec{E} \cdot d\vec{l} = E_0 R^2 \left(-\frac{1}{r^2} \right) _r^{\infty} \]

\[V(r) = E_0 \frac{R^2}{r} \]

as expected, same as V for a point charge Q.

\[r=R: \quad V(R) = E_0 R \]

\[r<R: \quad V(r) = -\int_{-\infty}^{R} \vec{E} \cdot d\vec{l} - \int_{R}^{r} \vec{E} \cdot d\vec{l} \]

\[= E_0 R + (R-r) E_0 = \frac{(2R-r)E_0}{r} \]