Problem 1 (15 points)

Two infinite line charges of linear density λ are parallel to each other at a distance d above an infinite grounded conducting plate. They are a distance $2d$ apart, as shown in cross section in the figure. The point P lies on the planar surface midway between the line charges as shown.

(a) Find V at P.

(b) Find \mathbf{E} (magnitude and direction) at P.

(c) Find the induced surface charge density σ at P.

(a) P is on a grounded conductor, so $V = 0$.

On add contributions from 4 line charges; two are $+\lambda$, two are $-\lambda$, all are equidistant, so V adds to zero.

(b)
\[
\mathbf{E}(P) = \frac{\lambda}{2\pi\varepsilon_0} \frac{s_1}{s_2} \mathbf{s}_1 = \frac{\lambda}{2\pi\varepsilon_0} \mathbf{s}_2
\]

\[
\mathbf{E}_1 = \frac{\lambda}{2\pi\varepsilon_0} \frac{d^2}{(1/2)^2} = \frac{\lambda}{4\pi\varepsilon_0 d} (x'-y')
\]

\[
\mathbf{E}_2 = \frac{\lambda}{4\pi\varepsilon_0 d} (-x'-y') \quad \mathbf{E}_3 = \frac{\lambda}{4\pi\varepsilon_0 d} (-x'-y') \quad \mathbf{E}_4 = \frac{\lambda}{4\pi\varepsilon_0 d} (x'-y')
\]

Total $E_x = 0$, $E_y = -\frac{\lambda}{\pi\varepsilon_0 d} y$

\[
\mathbf{E} = -\frac{\lambda}{\pi\varepsilon_0 d} \hat{y}
\]

(c) $\sigma = \frac{\sigma}{\varepsilon_0}$

$\sigma = -\frac{\lambda}{\pi d}$
Problem 2 (10 points)

You are given that the potential $V(r, \theta) = V_0 \cos(\theta)$ at an inner radius $r = a$, and it equals $2V_0 \cos(\theta)$ at outer radius $r = 2a$. Also, you know that there is no charge filling the shaded vacuum between these two radii.

(a) Find $V(r, \theta)$ in this shaded region, i.e., for $a < r < 2a$.

(b) Convert your answer from (a) to Cartesian coordinates, and calculate the electric field $\mathbf{E}(r)$ in the shaded region.

Hint: If the answer to (b) is surprisingly simple, you are probably on the right track.

\begin{align*}
(a) \quad & V(r, \theta) = \left(A r + \frac{B}{r^2} \right) P_1(\cos \theta) \quad \text{since} \quad \cos \theta = P_1(\cos \theta) \\
& \quad \text{Match at } r=a: \quad (Aa + \frac{B}{a^2}) = V_0 \\
& \quad \text{Match at } r=2a: \quad (2Aa + \frac{B}{4a^2}) = 2V_0 \\
& \quad \text{Eliminate } A: \quad (-2 + \frac{1}{a^2})B = 0 \\
& \quad B = 0 \Rightarrow V(r, \theta) = \frac{V_0}{a} r \cos \theta \\
(b) \quad & \quad \cos \theta = z \quad V(x, y, z) = V_0 \frac{z}{a} \\
& \quad \mathbf{E} = -\nabla V = -\frac{V_0}{a} \hat{z} \quad \text{UNIFORM E-FIELD!} \\
& \quad \text{We are in 3D spherical coordinates, so } r \cos \theta = z, \text{ not } x!
\end{align*}
Problem 3 (10 points)

A disk of radius R lies in the x-y plane with its center on the origin. The disk is covered with a uniform surface charge density σ, and also has a point charge $q = -\pi R^2 \sigma$ at its center. Find the leading behavior of $V(r, \theta)$ far from this object.

\[I_0 = Q = (\pi R^2) \sigma + (-\pi R^2 \sigma) = 0 \text{ NEUTRAL!} \]

\[I_1 = Q_2 = 0 \text{ by symmetry (all at } z = 0) \]

\[I_2 = \int_0^\infty \int_0^{2\pi} r^2 P^2 (\cos \theta) \sigma \, dr \, d\phi \]

\[= -\frac{\pi \sigma}{\varepsilon_0} \int_0^R r^3 dr = -\frac{\pi \sigma R^4}{4} \]

\[\therefore V(r, \theta) = \frac{I_2}{4\pi \varepsilon_0} \frac{1}{r^2} P_2 (\cos \theta) \]

\[V(r, \theta) = -\frac{\sigma R^4}{16 \varepsilon_0} \frac{1}{r^3} P_2 (\cos \theta) = -\frac{\sigma R^4}{32 \varepsilon_0} \frac{3 \cos^2 \theta - 1}{r^3} \]
Problem 4 (15 points)

A thick spherical shell fills the region \(a < r < b \) and carries a given polarization

\[\mathbf{P}(r) = \frac{\gamma}{r} \hat{r} \]

where \(\gamma \) is a constant. No free charge is present; vacuum fills the regions \(r < a \) and \(r > b \).

a) Find all bound charges, both of type \(\rho_b \) and \(\sigma_b \).

b) Check overall neutrality.

b) Find \(E(r) \) (the electric field that results from the bound charges) in all three regions: \(r < a \), \(a < r < b \), and \(r > b \).

\[a) \quad \rho_b = -\hat{r} \cdot \nabla \cdot \mathbf{P} = -\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 P(r) \right) = -\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \gamma r \right) = -\frac{\gamma r}{r^2} \]

\[\sigma_b^{\text{in}} = -\frac{\gamma}{a} \quad \sigma_b^{\text{out}} = \frac{\gamma}{b} \]

\[b) \quad Q_{\text{tot}} = 4\pi a^2 \left(-\frac{\gamma}{a} \right) + 4\pi b^2 \left(\frac{\gamma}{b} \right) + 4\pi \int_a^b \left(\frac{-\gamma r}{r^2} \right) r^2 dr = 4\pi \gamma \left(-a + b - (b-a) \right) = 0 \]

\[c) \quad 4\pi r^2 E(r) = \frac{1}{\varepsilon_0} Q_{\text{enc}} = 0 \quad \text{for} \quad r < a \quad \text{or} \quad r > b \quad \Rightarrow \quad E = 0 , \quad r < a \quad \text{or} \quad r > b \]

\[\text{For} \quad a < r < b , \quad Q_{\text{enc}} = -4\pi \gamma a + 4\pi \int_a^r \left(\frac{-\gamma r}{r^2} \right) r^2 dr = -4\pi \gamma r \]

\[4\pi r^2 E(r) = -\frac{4\pi \gamma r}{\varepsilon_0} \quad \Rightarrow \quad E(r) = -\frac{\gamma}{\varepsilon_0 r} \]

Alternate solution:

\[\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = 0 \quad \Rightarrow \quad \mathbf{E} = -\frac{1}{\varepsilon_0} \mathbf{P} = -\frac{\gamma}{\varepsilon_0 r} \]
Problem 5 (15 points)

A cylindrical shell of dielectric constant ϵ with inner radius a and outer radius b has a line charge of linear density λ placed down its center. (Assume the cylinder and line charge have infinite length but calculate for a segment of length L; the L should fall out.)

a) Find $D(s)$ in each region ($s < a$, $a < s < b$, $s > b$).

b) Find $P(s)$ in the middle region, $a < s < b$, and express your answer in terms of the dielectric susceptibility χ of the material.

c) Find the bound charge density σ_b on the inner surface of the cylindrical shell.

(a) Gauss’s law for b:
\[\langle \vec{D}(s) = D(s) \hat{s} \rangle \]
\[2\pi s \int D(s) \, ds = Q_{\text{enc}} = \lambda \]
\[\Rightarrow \langle D(s) \rangle = \frac{\lambda}{2\pi s} \text{ Correct in all three regions!} \]

(b) $P(s) = \frac{\chi}{1+\chi} D(s) \Rightarrow \langle P(s) \rangle = \frac{\chi}{1+\chi} \frac{\lambda}{2\pi s}$

(c) $\sigma_b = \hat{P} \cdot \hat{n}$, $\hat{n} = -\hat{\hat{s}}$, $\sigma_b = -\frac{\chi}{1+\chi} \frac{\lambda}{2\pi a}$

Recall \hat{n} points away from dielectric, so $\hat{n} = -\hat{s}$ here.
Problem 6 (15 points)

An infinite cylinder of radius \(a \) contains a uniform volume charge density \(\rho \), and is moving to the right with velocity \(\mathbf{v} = v \hat{x} \). A point charge \(q \) is located a distance \(s \) from the axis of the cylinder \((s > a) \), and also moves to the right with the same velocity.

a) Calculate the electric force on charge \(q \) (magnitude and direction).

b) Calculate the magnetic force on charge \(q \) (magnitude and direction).

c) For what value of \(v \) does it appear that these forces should cancel?

\[a) \quad \lambda_{\text{eff}} = \pi a^2 \rho \]
\[E(s) = \frac{\lambda_{\text{eff}}}{2\pi \varepsilon_0 s} \hat{s} = \frac{\pi a^2 \rho}{2\pi \varepsilon_0 s} \hat{s} = \frac{a^2 \rho}{2\varepsilon_0 s} \hat{s} \]
\[\mathbf{F} = q E = \frac{a^2 \rho \varepsilon_0}{2s} \hat{s} \]

\[b) \quad I_{\text{eff}} = \pi a^2 J = \pi a^2 (\rho v) \]
\[\mathbf{B}(s) = \frac{\mu_0 I_{\text{eff}}}{2\pi s} \hat{\phi} = \frac{\mu_0 \pi a^2 \rho v}{2\pi s} \hat{\phi} = \frac{\mu_0 a^2 \rho v}{2s} \hat{\phi} \]
\[\mathbf{F} = q \mathbf{v} \times \mathbf{B} = \frac{\mu_0 a^2 \rho v^2}{2s} \hat{\phi} \times \hat{\phi} \]
\[\mathbf{F} = -\frac{\mu_0 a^2 \rho v^2}{2s} \hat{\phi} \]

\[c) \quad \mathbf{F}_{\text{ele}} = -\mathbf{F}_{\text{mag}} \Rightarrow \mu_0 v^2 = \frac{1}{\varepsilon_0} \Rightarrow v = \frac{1}{\mu_0 \varepsilon_0} \]

(Speed of light!)
Problem 7 (10 points)

An infinite slab fills the region $-a < z < a$ and carries a non-uniform current density $\mathbf{J} = \gamma z^2 \hat{x}$. Use Ampère’s Law to find the magnetic field inside the slab only. You can assume that $\mathbf{B}(z) = -\mathbf{B}(-z)$.

Hint: Path P may be a useful choice for the Ampèrian loop.

\[
\begin{align*}
\mathbf{B}(z) &= B(z) \hat{y} \\
\text{Ampère:} & \\
\oint_P \mathbf{B} \cdot d\mathbf{l} &= \mu_0 I_{\text{enc}} \\
- B(z) \ell + B(-z) \ell &= \mu_0 \ell \int_{-z}^{z} \gamma z^2 \, dz \\
-2B(z) &= \mu_0 \left(\frac{\gamma z^3}{3} \right) \bigg|_{-z}^{z} \\
B(z) &= -\frac{\mu_0 \gamma z^3}{3} \\
\mathbf{B}(z) &= -\frac{\mu_0 \gamma z^3}{3} \hat{y}
\end{align*}
\]
Problem 8 (10 points)

The strangely shaped wire at right lies flat in the x-y plane and carries current I as shown. The path has two semicircular arcs of radii R_1 and R_2 centered on the origin (shown as the dot), and two straight segments that would pass through the origin if extended.

Find the magnetic field at the origin (magnitude and direction).

Extra Credit (+3): Compute the total force on the current loop, assuming that a uniform external magnetic field $\vec{B} = B_0 \hat{z}$ is present.

FROM PATH 1:

\[\vec{B}_0 = \frac{\mu_0 I}{4\pi} \int \frac{dl \times \hat{z}}{R} \]

\[n = R_1, \quad \hat{n} \times \hat{z} = \hat{\hat{z}}, \quad dl = \pi R_1 \]

\[\vec{B}_{10} = \frac{\mu_0 I}{4\pi} I (\pi R_1) \frac{1}{R_1^2} = \frac{\mu_0 I}{4 R_1} \]

Similarly,

\[\vec{B}_{13} = \frac{\mu_0 I}{4 R_2} \]

\[\vec{B}_{23} = \vec{B}_{45} = 0 \quad \text{since} \quad \hat{n} \parallel dl \Rightarrow \]

\[\vec{B} = \frac{\mu_0 I}{4} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]

Extra Credit

- $F_x = 0$ by symmetry
- $F_{ly} = I \int (dl \times \vec{B}) \cdot \hat{y} = 0$
- $F_{ty} = F_{4y} = 2 I B_0 (R_2 - R_1)$
- $F_{2y} = -2 I B_0 R_2$

Actually, for any closed loop,

\[F_{ly} = -I B_0 \oint dl_x = 0 \quad \text{since} \quad \oint dl_x = 0 \]

In fact, $\vec{F}_{tot} = 0$. Wow! But only for uniform \vec{B}, and the torque is not zero.