a) What is the value of the **maximum** possible total angular momentum quantum number \(j \) for a configuration with three optically active electrons of quantum numbers \(l_1 = 0, l_2 = 1, l_3 = 2 \)?

ANSWER:

The total angular momentum is given by
\[
j = \ell + s
\]
where \(\ell \) is the orbital angular momentum and \(s \) is the spin angular momentum. (Note that, to an extent, \(\ell \) and \(s \) can be viewed as magnitudes, while \(m_\ell \) and \(m_s \) as directions.)

The maximum total orbital angular momentum is just \(0 + 1 + 2 = 3 \).

The maximum spin angular momentum is just \(1/2 + 1/2 + 1/2 \) because one has three electrons. Electrons are fermions that have spin \(1/2 \).

Thus, the maximum total angular momentum is \(j = 3 + 3/2 = 9/2 \).

b) What are the possible values of the total electronic angular momentum quantum number in a 3\(^1 \)D state of the helium atom?

ANSWER:

Spectroscopic notation is given by \(n^{2s+1}L_j \), and it’s actually quite useful when one is dealing with multiple particles. Recall, \(L \) is equivalent to \((S, P, D, F) \), respectively, for orbital angular momentum values of \(0, 1, 2, 3 \). \(s=1/2 \) for electrons. \(j \) is the total angular momentum.

Knowing the convention, one can plug in numbers to solve \(1 = 2s + 1 \Rightarrow s = 0 \). Since the main-script is a \(D \), \(\ell = 2 \). The total angular momentum is \(j = s + \ell = 0 + 2 = 2 \). This is the only allowed value.

c) Write down the ground state electron configuration for phosphorus, which has 15 electrons.

ANSWER:

Following the conventions we know about electron configuration, and making sure that the superscripts add to 15, we find:

\(1s^22s^22p^63s^23p^3 \)