Final Exam Info

- **Wed. Dec 20th 8-11am room SEC 118**
 - Cumulative, but with a focus on the material since the midterm
 - it will be **closed book** but you are allowed to bring **TWO** equation sheets (max)
 - two 8.5" x 11" sheet of paper with formulas and notes to consult during the exam. You may write on both sides of these cheat sheets.
 - you should also bring a couple of pencils and a scientific calculator.
 - check website for more information.

- **Wednesday’s class will be a final exam review session – you are strongly encouraged to attend!** I will post slides in advance.

- **I will hold office hours Tuesdays, December 12 and 19 from 3:30-4:30pm.**
How to study

- Reed chapters 1-10
 - Review the examples in the book!
- Review Eisberg&Resnick material on reserve at MSLC
- Review all lectures
- Review all homework problems
- Go over Wednesday’s review session material
- Prepare your formula sheets
- Form study groups
Numerical Solutions to SE

- Whether the solution to SE is exact or approximate, often the algebra is extremely tedious.

- It is possible to solve SE for complicated potentials with numerical integration.

- A drawback to this technique is that the eigenstates need to be evaluated one at a time.
If we express:

\[\begin{bmatrix} m \\ l \end{bmatrix} = \hat{A} \]

\[[E] = eV \]

SE becomes:

\[\frac{d^2 \Psi(x)}{dx^2} = -0.26246 m [E-V(x)] \Psi(x) \]
Numerical Integration

- Divide domain \(x \) into a number of equally spaced discrete points separated by step size \(\Delta x \)
- Start to add small increments to \(\Psi(x) \), stating at point \(x_0 \), based on derivatives multiplied by step sizes.

1) Need SE

\[
\frac{d^2 \Psi(x)}{dx^2} = -0.26246 m \left[E - V(x) \right] \Psi(x)
\]

2) Need second derivative

\[
\left(\frac{d^2 \Psi}{dx^2} \right)_{x_0} = \left[\left(\frac{d\Psi}{dx} \right)_{x_0 + \Delta x} - \left(\frac{d\Psi}{dx} \right)_{x_0} \right] / \Delta x
\]

\[
\left(\frac{d\Psi}{dx} \right)_{x_0 + \Delta x} = \left(\frac{d^2 \Psi}{dx^2} \right)_{x_0} \Delta x + \left(\frac{d\Psi}{dx} \right)_{x_0}
\]

3) Need Taylor series expansion

\[
\Psi(x_0 + \Delta x) = \Psi(x_0) + \left(\frac{d\Psi}{dx} \right)_{x_0} \Delta x + \left(\frac{d^2 \Psi}{dx^2} \right)_{x_0} \frac{\Delta x^2}{2} + \ldots
\]
Numerical Integration

1. Specify: \(V(x) \), \(\Delta x \), \(x_0 \), values of \(\Psi \) at \(x_0 \)
2. Make a trial guess at energy eigenvalue \(E \)
3. Begin integration “cycle” using SE and computing \((d^2\Psi/dx^2) \) at \(x_0 \)
4. Use above to compute \(\Psi(x_0 + \Delta x) \) using Taylor series expansion
5. Use above results to compute \((d\Psi/dx) \) at \(x_0 + \Delta x \)
6. Go back to step 3 and repeat, until \(x \) reaches an appropriate upper limit.
Example

Let’s use numerical integration to evaluate the ground state energy solution for the linear potential we’ve considered before

\[V(x) = \begin{cases}
\infty & x < 0 \\
\alpha x & x \geq 0
\end{cases} \]

\[\alpha = 1 \text{eV/Angstrom} \]
Energy eigenvalues for quantum state n we found earlier can be written as:

$$\epsilon_n = \eta_n \alpha^{2/3} \varepsilon^{1/3}$$

- η_n is a dimensionless numerical coefficient

$$\alpha^{2/3} \varepsilon^{1/3} = 1.5619 \text{eV}$$

$$E_n / \eta_n = 1.5619 \text{eV}$$

- From table, a good guess for ground state η is ~ 1.8, which makes $E \sim 2.8 \text{eV}$

- So a good first trial guess for E is $\sim 3 \text{eV}$

<table>
<thead>
<tr>
<th>Method</th>
<th>η_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncertainty Principle</td>
<td>> 1.191</td>
</tr>
<tr>
<td>WKB Approximation</td>
<td>2.811</td>
</tr>
<tr>
<td>Variational</td>
<td>< 2.476</td>
</tr>
<tr>
<td>Improved Variational</td>
<td>$1.560 - 2.476$</td>
</tr>
<tr>
<td>Exact</td>
<td>2.338107</td>
</tr>
</tbody>
</table>
- Graph diverges at $x \sim 6$ Angstroms

- If we were to increase guess of E to 3.1eV, divergence happens at a slightly higher x

- At E between 3.6 and 3.7eV, go from positive to negative divergence (more precisely at around $3.6510eV$), so:

 \[\eta_1 \sim \frac{3.6510}{1.5619} = 2.3375 \]

 About 0.24% lower than exact value
Interpretations of QM: References

- Many text books, e.g.:
 - Griffiths: “Introduction to Quantum Mechanics”, Pearson, 2005
Copenhagen Interpretation

- (Bohr, Heisenberg)
- A wave function Ψ provides a complete characterization of the state of a system.
- In general Ψ is a superposition of eigenstates:
 \[\Psi = \sum a_n \Psi_n \]
- Measurement yields an eigenvalue, and Ψ abruptly collapses to Ψ_n.
- Cannot predict which Ψ_n
 - Probability is $a_n^* a_n$
- Ohanian: Measurements produce unpredictable, discontinuous changes in Ψ, which do not obey S.E., when the collapse occurs.
Hidden Variables Interpretation

- \(\Psi \) is not a complete description.

- There are hidden variables and if we knew them, we’d avoid probabilities and predict exactly how the system will evolve.
The Paradox of Shrodinger’s Cat

- A cage contains a cat, some radioactive atoms and a geiger counter.
- There is a 50% chance that in the next hour an atom will decay, counter will click, which releases a hammer that breaks the bottle of poison and kills the cat.
- In QM how do we describe the state of the cat after an hour?
 \[\Psi_{cat} = \frac{1}{\sqrt{2}} \Psi_{alive} + \frac{1}{\sqrt{2}} \Psi_{dead} \]
- But we never see a superposition. When we look, \(\Psi_{cat} \) collapses and cat is either alive or dead.
- But when and how did the collapse occur?
Interpretations

- **Idealistic or subjective interpretation of Von Neumann and Wigner:**
 - Collapse occurs when observer’s consciousness registers that the cat is alive or is dead!
- **Most people disagree.**
 - e.g. Ohanian: What level of consciousness is sufficient to bring about collapse? Is human consciousness required, or is that of a cat or a mosquito sufficient?
Interpretations

- **Many-worlds interpretation** of Everett:
 - No collapse.
 - So if we make an observation and obtain a live cat, that causes the universe to split into a parallel branch in which the cat is dead!
 - So the universe is continually splitting into myriad branches which remain forever unaware of each other.
- Main objection: this is not testable!
Interpretations

- **Realism interpretation:**
 - At any instant, cat is either alive or is dead.
 - Physical reality exists whether or not an observation is made.
 - Einstein: Is the moon not there if nobody is looking?
Phenomenolism

- Copenhagen interpretation adopts ideas of logical positivism or phenomenalism.
- The only meaningful statements we can make about a physical system are those that are testable and measurable.
- So Ψ_{cat} does not imply that cat is a superposition of life and death.
- What is meaningful is that it predicts the probability of the cat being alive or dead WHEN an observation is made.
Ohanian: We must not regard Ψ as some kind of snapshot of the instantaneous configuration of the system.

Goswami:

- Heisenberg said that Ψ represents the not real system but our knowledge of the system.
- The collapse of the wave function is not a real physical event, but represents a change in our knowledge of the system as a result of our measurement.

A related concept is inseparability:

- Quantum systems cannot be separated from the measurement process.
Bohm’s Hidden Variables Alternative

- Particles do possess definite positions and velocities but these features are hidden from view.

- Wave function of a particle interacts with the particle itself - it guides or pushes the particle around - in a way that determines its subsequent motion.

- Changes to the wave function in one location are able to immediately push a particle at a distant location.

- Hence explicitly non-local.

- Main criticism:

 - It is a central element of Bohm’s theory that the wave function can exert faster-than-light influences on the particle it pushes.
Conclusions

- Majority of physicists accept Copenhagen interpretation and the acronym
 - SUAC: Shut up and calculate
 - In other words, regard QM as a calculational tool.
Summary/Announcements

- Next time: REVIEW FOR FINAL EXAM

- I will hold final office hours this week and next week on Tuesdays from 3:30-4:30pm.

- Please fill out the course survey at:
 http://ctaar.rutgers.edu/sirs/current-surveys

- Final exam: Wed. Dec 20th 8-11am room SEC 118
 - More details on earlier slides and this Wed during review

- Now time for a QUIZ …