Quantum Mechanics and Atomic Physics

Lecture 10:
Virial Theorem, etc

+ The Harmonic Oscillator: Part I

http://www.physics.rutgers.edu/ugrad/361

Prof. Eva Halkiadakis
Orthogonality

- **Theorem**: Eigenfunctions with different eigenvalues are orthogonal.

- Consider a set of wavefunctions satisfying S.E. for some potential $V(x)$

- Then orthogonality states:

\[
\int_{-\infty}^{\infty} \psi_k^* \psi_n \, dx = 0 \quad \text{for} \quad k \neq n \quad \text{and} \quad E_k \neq E_n
\]

- In other words, if any two members of the set obey the above integral constraint, they constitute an orthogonal set of wavefunctions.

- Let’s prove this…
Proof: Orthogonality Theorem

\[-\frac{\hbar^2}{2m} \frac{d^2 \psi_n}{dx^2} + V \psi_n = E_n \psi_n\]

\[-\frac{\hbar^2}{2m} \frac{d^2 \psi_k}{dx^2} + V \psi_k = E_k \psi_k\]

\[\rightarrow \text{ take complex conjugate:}\]

\[\Rightarrow -\frac{\hbar^2}{2m} \frac{d^2 \psi_k^*}{dx^2} + V \psi_k^* = E_k \psi_k^*\]

\[\Rightarrow \text{ Multiply by } \psi_k^*\]

\[\Rightarrow \text{ Multiply 1st eqn by } \psi_k^*\]

\[\Rightarrow \text{ Subtract:}\]

\[-\frac{\hbar^2}{2m} \left(\psi_k^* \frac{d^2 \psi_n}{dx^2} - \psi_n \frac{d^2 \psi_k^*}{dx^2} \right) + V \left(\psi_k^* \psi_n - \psi_n \psi_k^* \right) = 0\]

\[= (E_n - E_k) \psi_k^* \psi_n\]
Proof, con’t

\[\Rightarrow \frac{d}{dx} \left(\psi_k^* \frac{d \psi_n}{dx} \right) = \psi_k^* \frac{d^2 \psi_n}{dx^2} + \frac{d \psi_k^*}{dx} \frac{d \psi_n}{dx} \]

and

\[\frac{d}{dx} \left(\psi_n \frac{d \psi_k^*}{dx} \right) = \psi_n \frac{d^2 \psi_k^*}{dx^2} + \frac{d \psi_n}{dx} \frac{d \psi_k^*}{dx} \]

Take diff:

\[\frac{d}{dx} \left(\psi_k^* \frac{d \psi_n}{dx} - \psi_n \frac{d \psi_k^*}{dx} \right) = \psi_k^* \frac{d^2 \psi_n}{dx^2} - \psi_n \frac{d^2 \psi_k^*}{dx^2} \]
Theorem is proven
Orthonormality

In addition, if each individual member of the set of wavefunctions is normalized, they constitute an orthonormal set:

\[\text{If } n \neq k, \quad E_n - E_k = 0\]
and integral need not be 0.

If \(\psi_n \) are normalized:

\[\int_{-\infty}^{\infty} \psi_n^* \psi_n \, dx = 1\]

\[\int_{-\infty}^{\infty} \psi_k^* \psi_n \, dx = \langle \psi_k^* | \psi_n \rangle = \delta_{kn}\]

\[\delta_{kn} = \begin{cases} 1 & (k = n) \\ 0 & (\text{otherwise}) \end{cases}\]

Kronecker delta
Degenerate Eigenfunctions

- If \(n \neq k \), but \(E_n = E_k \), then we say that the eigenfunctions are **degenerate**.

- Since \(E_n - E_k = 0 \), the integral need not be zero.

- But it turns out that we can always obtain another set of \(\Psi \)’s, linear combinations of the originals, such that the new \(\Psi \)’s are orthogonal.
Principle of Superposition

- **Any linear combination of solutions to the S.E. is also a solution**
- For example, particle in infinite square well can be in a superposition of states:

\[\psi = c_1 \Psi_1 + c_2 \Psi_2 \]

- Is this \(\Psi \) an eigenstate of energy?

\[E_0 \psi = c_1 E_0 \Psi_1 + c_2 E_0 \Psi_2 \]

\[= c_1 E_1 \Psi_1 + c_2 E_2 \Psi_2 \]

\[\neq \text{(const)} \Psi \]

Because \(E_1 \neq E_2 \).

- So it is **not** an eigenstate of energy.
- The measurement will yield either \(E_1 \) or \(E_2 \), though not with equal probability.
- *The system need not be in an eigenstate* - the superposition state \(\Psi \) “collapses” into one of the eigenstates when one makes a measurement to determine which state the system is actually in.

We covered this in lectures 3 & 4!
A Time-Dependent Wave-Packet

- See Reed Section 4.8 for a very nice example:

\[\Psi^2 = \alpha^2 \Psi_1^2 + \beta^2 \Psi_2^2 + 2 \alpha \beta \Psi_1 \Psi_2 \cos[(\omega_1 - \omega_2)t] \]

\(\Psi^2 \) oscillates!

\[\omega T = 2\pi \]

\[T = \frac{2\pi}{\omega_1 - \omega_2} = \frac{2\pi}{(E_1 - E_2)} = \frac{1}{(E_1 - E_2)} \]

Since \(\Psi_1 \) and \(\Psi_2 \) are orthogonal and \(E_1 \neq E_2 \)

\[\langle X \rangle = \alpha^2 \int (x \Psi_1^2) \, dx + \beta^2 \int (x \Psi_2^2) \, dx + 2 \alpha \beta \int (x \Psi_1 \Psi_2) \cos[(\omega_1 - \omega_2)t] \, dx \]

This term doesn’t vanish! \(\rightarrow \) superposition of states

Illustrates concept of a traveling wave and the principle of superposition.
Theorem

If Ψ is in an eigenstates of Q_{op} with eigenvalue λ, then $<Q> = \lambda$ and $\Delta Q = 0$.

So, λ is the only value we’ll observe for Q!

Proof:

\[
\bar{Q} = <Q> = \int \psi^* Q_{op} \psi \, dx = \int \psi^* \lambda \psi \, dx
\]

\[
\Rightarrow \quad <Q> = \lambda \int \psi^* \psi \, dx = \lambda
\]

\[
\bar{Q}^2 = <Q^2> = \int \psi^* Q_{op} (Q_{op}) \psi \, dx = \int \psi^* Q_{op} \psi \, dx
\]

\[
= \lambda \int \psi^* Q_{op} \psi \, dx = \lambda \int \psi^* \psi \, dx
\]

\[
= \lambda^2 \int \psi^* \psi \, dx = \lambda^2
\]

\[
\Delta Q = \sqrt{<Q^2> - <Q>^2} = \sqrt{\lambda^2 - \lambda^2} = 0
\]

No uncertainty! Observe λ only.
The Virial Theorem (VT) is an expression that relates the expectation values of the KE$_{op}$ and PE$_{op}$ for any potential.

Suppose operator A is time-independent

$$[A, H_{op}]\psi = A_{\psi} (H_{op} \psi) - H_{op} (A_{\psi} \psi)$$

$$= i\hbar \left[A \frac{\partial \psi}{\partial t} - \frac{\partial}{\partial t} (A \psi) \right]$$

$$= i\hbar \left[A \frac{\partial \psi}{\partial t} - A \frac{\partial \psi}{\partial t} \right] = 0$$

In VT, A is defined as:

$$A = \frac{\partial}{\partial t} \psi$$

Section 4.9 in Reed goes through the proof of the VT in great detail which gives:

$$\Rightarrow 2 \langle KE \rangle = \langle \vec{p} \cdot \vec{D} V \rangle \quad \text{for any potential} \, V$$
Example: VT using a radial potential

\[V(r) = \frac{k}{r} \]

\[\nabla V = \left(\frac{\partial V}{\partial r} \right) \hat{r} = n \kappa r^{n-1} \hat{r} \]

\[\hat{r} \cdot \nabla V = (r \hat{r}) \cdot (n \kappa r^{n-1}) \hat{r} = n \kappa r^n = n V \]

\[\Rightarrow 2 \langle kE \rangle = n \langle V \rangle \]
The Classical Harmonic Oscillator

- Classical mechanics examples
 - Mass on a spring
 - Mass swinging as a simple pendulum

- These examples all correspond to a situation where we have a linear restoring force:
 \[F = -kx \quad -\infty \leq x \leq \infty \]

- And the harmonic oscillator potential is then:
 \[V(x) = -\int F(x) \, dx = \int kx \, dx = \frac{1}{2}kx^2 + C \]
The S.E. for the harmonic oscillator potential

\[V(x) = \frac{1}{2} k x^2 \quad \text{for all } x \]

\[f(x) = -\frac{dV}{dx} = -k x \]

- S.E.:
 \[-\frac{\hbar^2}{2m} \frac{d^2\psi}{dx^2} + \frac{1}{2} k x^2 \psi = E \psi \]

- Angular Frequency of oscillator:
 \[\omega = \sqrt{\frac{\hbar}{m}} \Rightarrow \hbar = m \omega^2 \]

- So,
 \[\frac{d^2\psi}{dx^2} + \frac{2mE}{\hbar^2} \psi - \frac{m^2 \omega^2}{\hbar^2} x^2 \psi = 0 \]
Let’s define: \(\xi = a \chi \)

and

\[\alpha = \sqrt{\frac{m\omega}{\hbar}}, \quad \beta = \frac{2mE}{\hbar^2} \]

Think of \(\xi \) as a dimensionless measure of \(x \)

So:

\[\frac{d^4}{dx^4} = \frac{d^4}{d\xi^4} \frac{d\xi}{dx} = \alpha \frac{d^4}{d\xi^4} \]

\[\frac{d^2}{dx^2} = \alpha \frac{d}{dx} \left(\frac{d^4}{d\xi^4} \right) = \alpha \frac{d^2}{d\xi^2} \frac{d\xi}{dx} = \alpha^2 \frac{d^2}{d\xi^2} \]

Insert back into S.E.
S.E. of H.O., con’t

\[\alpha^2 \frac{d^2 \psi}{d \xi^2} + (\beta - \alpha^4 (\frac{\xi}{\alpha})^2) \psi = 0 \]

\[\alpha^2 \frac{d^2 \psi}{d \xi^2} + (\beta - \alpha^4 (\frac{\xi}{\alpha})^2) \psi = 0 \]

\[\frac{d^2 \psi}{d \xi^2} + (\frac{\beta}{\alpha^2} - \xi^2) \psi = 0 \]

- Let’s define:

\[\lambda = \frac{\beta}{\alpha^2} = \frac{2mE}{\hbar^2} \cdot \frac{\hbar}{m\omega} = \frac{2}{\hbar\omega} E \]

\[\varepsilon = \frac{2}{\hbar\omega} \implies \lambda = \varepsilon E \]

- Think of \(\lambda \) as a dimensionless measure of \(E \)
Finally we have:

\[\Rightarrow \frac{d^2\psi}{d\xi^2} + (\lambda - \xi^2)\psi = 0 \]

This is called Weber’s Differential Equation
Dimensional Analysis

- Let’s check that ξ is a dimensionless measure of x

$$\xi = \alpha x$$

$[\alpha]_{\text{units}} = m^{-1}$

Let’s check:

$$\alpha = \sqrt{\frac{mw}{th}} = \left(\frac{mk}{k^2} \right)^{\frac{1}{2}}$$

$m^{-1} = \left[\frac{kg \cdot N}{m} \cdot \frac{1}{(J \cdot s)^2} \right]^{\frac{1}{2}}$

$m^{-1} = \left[\frac{kg \cdot kg \cdot m/s^2 \cdot kg^2 m^2 / s^4 \cdot s^2}{kg^2 m^2 / s^4} \right]^{\frac{1}{2}}$

$m^{-1} = \left(\frac{1}{m^2} \right)^{\frac{1}{2}}$

$m^{-1} = m^{-1} \checkmark$
Dimensional Analysis

- Let’s check that λ is a dimensionless measure of E

\[
\lambda = \varepsilon E
\]

\[
\varepsilon = \frac{2}{h\omega}
\]

\[
[\varepsilon]_{\text{units}} = \frac{1}{J}
\]

\[
\frac{1}{J} = \frac{1}{J \cdot s \cdot H_3}
\]

\[
= \frac{1}{J \cdot s \cdot s^{-1}}
\]

\[
= \frac{1}{J}
\]

\[\checkmark\]
The Asymptotic Solution

- Let’s solve for $\Psi(\xi)$ and then revert back to x.
- First, let’s consider Ψ at large ξ, i.e. large x
 - λ stays finite so:
 \[
 \frac{d^2 \Psi}{d\xi^2} - \xi^2 \Psi = 0 \quad \text{for } \xi \to \pm \infty
 \]
 \[
 \frac{d^2 \Psi}{d\xi^2} \approx \xi^2 \Psi
 \]
 - A general solution is:
 \[
 \Psi = A e^{-\frac{\xi^2}{2}} + B e^{\frac{\xi^2}{2}}
 \]
The Asymptotic Solution, con’t

- Just like finite square well, we want that $\Psi(\xi) \to 0$ as $\xi \to \infty$
 - We establish the **asymptotic form** of the wavefunction
 - So if we require finiteness at $\xi = \infty$, then we must require $B = 0$, so:

$$\Psi(\xi) \approx A e^{-\xi/2} \quad \text{for} \quad \xi \to +\infty$$
For a more general solution, valid at any ξ, let’s try

$$\psi(\xi) = H(\xi) e^{-\frac{1}{2} \xi^2}$$

$H(\xi)$:
- is a yet unknown function.
- It must vary more slowly than $\exp(-\frac{\xi^2}{2})$ at large ξ.

The Series Solution
The Series Solution, con’t

- How do we know if this is a valid assumption?
 - We don’t know yet, but let’s see if it works.

\[
\frac{d^2 \psi}{d \xi^2} = \left(\frac{d^2 H}{d \xi^2} - 2 \xi \frac{d H}{d \xi} + (\xi^2 - 1) H \right) e^{-\xi^2/2} \\
\frac{d^2 \psi}{d \xi^2} + (\lambda - \xi^2) \psi = 0
\]

\[
\Rightarrow \left(\frac{d^2 H}{d \xi^2} - 2 \xi \frac{d H}{d \xi} + (\xi^2 - 1) H \right) e^{-\xi^2/2} + (\lambda - \xi^2) H e^{-\xi^2/2} = 0
\]

\[
\frac{d^2 H}{d \xi^2} - 2 \xi \frac{d H}{d \xi} + (\lambda - 1) H = 0
\]
The Series Solution, con’t

Let’s try series solution:

\[H(\xi) = \sum_{n=0}^{\infty} a_n \xi^n \]

(We omit negative powers since they would blow up at \(x=\xi=0 \))

\[
\frac{dH}{d\xi} = \sum_{n=0}^{\infty} n a_n \xi^{n-1}
\]

\[
\frac{d^2H}{d\xi^2} = \sum_{n=0}^{\infty} n(n-1) a_n \xi^{n-2}
\]
The Series Solution, con’t

Plug back into eqn on p. 24:

\[\sum_{n=0}^{\infty} n(n-1) a_n \xi^{n-2} - 2 \sum_{n=0}^{\infty} n a_n \xi^n + \sum_{n=0}^{\infty} (\lambda - 1) a_n \xi^n = 0 \]

\[\sum_{n=0}^{\infty} n(n-1) a_n \xi^{n-2} + \sum_{n=0}^{\infty} (\lambda - 1 - 2\alpha) a_n \xi^n = 0 \]

\[\sum_{n=0}^{\infty} n(n-1) a_n \xi^{n-2} = 0 + 0 + \sum_{n=2}^{\infty} n(n-1) a_n \xi^{n-2} \]

(n=0) (n=1) (since sum makes no contribution due to n(n-1))
We’ll continue this next time....
Summary/Announcements

- Next time: Harmonic Oscillator continued
 - Wavefunctions, probability, raising and lowering operators

- Next homework due on Monday Oct 16.

- Midterm exam Wed. Oct. 25 - it will be closed book – covers chapters 1-5 and related lectures - check website for more information.