News

• Lab 4
 – Handed back next week (I hope).

• Lab 6 (Color-Magnitude Diagram)
 – Observing completed; you should have been assigned data if you were not able to observe.
 – Due: instrumental color-magnitude diagram: email it to me by tomorrow (or whenever you finish it). Whole lab due November 30.
Lab 6: Color-Magnitude Diagram

• Target is the open cluster M34.
 – CMD can determine the cluster distance and age.

• Will again perform differential photometry by using stars in the field with known standard magnitudes.
 – So the observations can be taken through thin scattered clouds.

• Will observe in both the B and V filter to get stellar colors, B−V.
 – Color measures stellar surface temperature.
One field approximately centered on M34.
A field with the center offset.
More central M34 field in I band. Note the many faint stars.
M34 B 300 sec

Same field in B band. Note fewer faint stars.
M34 instrumental $(v, b-v)$ color-magnitude diagram. 1,235 stars
Location of the offset field.
907 stars; some are outside plot bounds
M34 Offset Field
Background stars in the Galactic disk (mostly).

Still a few M34 stars?

Background red giants or foreground dim red main-sequence stars.
M34 CMD
WIYN 0.9m
telescope
Green – proper motion member
Red – radial velocity member
Blue – photometric member

Transformation to Standard Magnitudes

• Thus, the standard transformation equations are:

 \[\text{B} - \text{V} = \phi_{bv} + \mu_{bv} (b - v) \]

 \[\text{V} - v = \phi_v + \varepsilon (B - V) \]

 • Here, B and V are the standard magnitudes and b and v are the instrumental magnitudes.

 • These can be considered first-order Taylor expansions. We will ignore higher order terms (they are usually unimportant).

 • The \(\mu_{bv} \) coefficient would be 1.0 and \(\varepsilon \) would be 0 if our system matched the standard one.

 • Actually differ from these values by 0.2 – 0.4.
Fitting the Transformations

• B–V equation:
 – Calculate a column of
 \[\Delta_{B-V} = (B-V) - (\phi_{bv} + \mu_{bv} (b - v)) \]
 – Make another column of \((\Delta_{B-V})^2\) and sum to form
 \[\chi^2 = \sum_i (\Delta_{B-V,i})^2. \]
 – Minimize \(\chi^2\) by varying \(\phi_{bv}\) and \(\mu_{bv}\) using solver in excel.

• V equation:
 – Calculate a column of
 \[\Delta_V = V - (v + \phi_v + \varepsilon (B - V)) \]
 – Proceed as above to determine \(\phi_v\) and \(\varepsilon\).
<table>
<thead>
<tr>
<th></th>
<th>v0</th>
<th>unc v0</th>
<th>i0</th>
<th>unc i0</th>
<th>v0-i0</th>
<th>unc v0-i0</th>
<th>V</th>
<th>B-V</th>
<th>V-i</th>
<th>V-v0</th>
<th>V-v0-phi'_v-eps*(V-i)</th>
<th>V-v0-phi'_v</th>
<th>V-i-phi_vi-mu_vi*(v-i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sa92-312</td>
<td>10.3644</td>
<td>0.0011</td>
<td>10.4867</td>
<td>0.0008</td>
<td>-0.1223</td>
<td>0.0014</td>
<td>10.598</td>
<td>1.636</td>
<td>1.806</td>
<td>0.2336</td>
<td>0.0160</td>
<td>2.53547192</td>
<td>-0.1951</td>
</tr>
<tr>
<td>sa92-309</td>
<td>13.4550</td>
<td>0.0069</td>
<td>14.8408</td>
<td>0.0130</td>
<td>-1.3858</td>
<td>0.0147</td>
<td>13.842</td>
<td>0.513</td>
<td>0.652</td>
<td>0.3870</td>
<td>0.0345</td>
<td>4.439005462</td>
<td>-0.0417</td>
</tr>
<tr>
<td>sa93-322</td>
<td>12.3056</td>
<td>0.0037</td>
<td>13.7286</td>
<td>0.0058</td>
<td>-1.4230</td>
<td>0.0069</td>
<td>12.676</td>
<td>0.528</td>
<td>0.608</td>
<td>0.3704</td>
<td>0.0128</td>
<td>1.21588242</td>
<td>-0.0583</td>
</tr>
<tr>
<td>sa92-276</td>
<td>11.7043</td>
<td>0.0033</td>
<td>12.9668</td>
<td>0.0011</td>
<td>-1.2625</td>
<td>0.0035</td>
<td>12.036</td>
<td>0.629</td>
<td>0.726</td>
<td>0.3317</td>
<td>-0.0121</td>
<td>1.445673742</td>
<td>-0.0969</td>
</tr>
<tr>
<td>sa92-282</td>
<td>12.5850</td>
<td>0.0026</td>
<td>14.2186</td>
<td>0.0049</td>
<td>-1.6336</td>
<td>0.0056</td>
<td>12.969</td>
<td>0.318</td>
<td>0.422</td>
<td>0.3840</td>
<td>0.0047</td>
<td>0.178115507</td>
<td>-0.0446</td>
</tr>
<tr>
<td>sa92-364</td>
<td>11.3473</td>
<td>0.0035</td>
<td>12.6443</td>
<td>0.0017</td>
<td>-1.2970</td>
<td>0.0039</td>
<td>11.673</td>
<td>0.607</td>
<td>0.714</td>
<td>0.3257</td>
<td>-0.0195</td>
<td>3.683766134</td>
<td>-0.1029</td>
</tr>
<tr>
<td>sa92-288</td>
<td>11.3301</td>
<td>0.0007</td>
<td>12.4021</td>
<td>0.0014</td>
<td>-1.0720</td>
<td>0.0016</td>
<td>11.631</td>
<td>0.858</td>
<td>0.932</td>
<td>0.3009</td>
<td>-0.0189</td>
<td>3.489068225</td>
<td>-0.1278</td>
</tr>
<tr>
<td>feige24</td>
<td>11.9727</td>
<td>0.0044</td>
<td>13.6094</td>
<td>0.0096</td>
<td>-1.6367</td>
<td>0.0106</td>
<td>12.412</td>
<td>-0.203</td>
<td>0.444</td>
<td>0.4393</td>
<td>0.0625</td>
<td>20.33706995</td>
<td>0.0106</td>
</tr>
<tr>
<td>feige24A</td>
<td>13.4726</td>
<td>0.0168</td>
<td>14.8719</td>
<td>0.0303</td>
<td>-1.3993</td>
<td>0.0346</td>
<td>13.822</td>
<td>0.525</td>
<td>0.635</td>
<td>0.3494</td>
<td>-0.0051</td>
<td>0.025212103</td>
<td>-0.0793</td>
</tr>
<tr>
<td>feige24B</td>
<td>13.1844</td>
<td>0.0130</td>
<td>14.4893</td>
<td>0.0211</td>
<td>-1.3049</td>
<td>0.0248</td>
<td>13.546</td>
<td>0.668</td>
<td>0.749</td>
<td>0.3616</td>
<td>0.0205</td>
<td>0.767454991</td>
<td>-0.0671</td>
</tr>
<tr>
<td>feige24C</td>
<td>11.4954</td>
<td>0.0029</td>
<td>12.3297</td>
<td>0.0032</td>
<td>-0.8343</td>
<td>0.0043</td>
<td>11.761</td>
<td>1.133</td>
<td>1.127</td>
<td>0.2656</td>
<td>-0.0314</td>
<td>8.927991238</td>
<td>-0.1631</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>phi_v</th>
<th>epsilon</th>
<th>-0.115</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>phi'_v</td>
<td>epsilon'</td>
<td>-0.117</td>
</tr>
<tr>
<td></td>
<td>phi_vi</td>
<td>mu_vi</td>
<td>0.919</td>
</tr>
<tr>
<td></td>
<td>0.412</td>
<td>0.429</td>
<td>1.913</td>
</tr>
</tbody>
</table>
The smaller range of b-v compared to B-V may arise because the CCD quantum efficiency weights our B band towards long λ’s and our V band towards short λ’s, thus reducing our wavelength baseline (hence, sensitivity to T).
Interstellar Extinction & Reddening

• Caused by scattering from “dust” grains in the interstellar medium.
 – About 1 magnitude of dimming per kiloparsec of distance in the plane of the Galaxy.
 – A major headache.

• Scattering cross-section is larger at shorter wavelengths (Rayleigh scattering), so light is reddened.
Interstellar Extinction & Reddening

• Dust grains properties uniform, so there is a (nearly) universal relation between reddening and extinction.
 – Reddening: \(E(B-V) = (B-V) - (B-V)_0 \)
 – Extinction: \(A_V = V - V_0 = 3.1 \ E(B-V) \)

• Reddening is not easy to determine.
 – Measure spectral type of stars and use relation between color and type for very nearby stars.

• For Lab 6 you are given \(E(B-V) \) and use it to correct your photometry to \(V_0 \) and \((B-V)_0 \).
Cluster Distance

- Slide a theoretical “zero-age” main sequence isochrone vertically until it matches the cluster main sequence.

\[m - M = 5 \log(d/10\text{ pc}) + A_V \]

\[m = M_V + 5 \log(d/10\text{ pc}) + A_V \]

- \(M_V \) = isochrone absolute magnitudes
- \(m = \) shifted isochrone apparent magnitudes \(M_V \)
- \(d = \) cluster distance
- \(A_V \) = extinction due to interstellar dust.
Pre-main-sequence stars

Blue: \(\log(\text{age/years}) < 7 \)
Green: \(7 \leq \log(\text{age/years}) < 8 \)
Black: \(8 \leq \log(\text{age/years}) \)

Isochrones
Increasing the m–M adopted for the isochrone in steps of 0.1.
Increasing the m−M adopted for the isochrone in steps of 0.1.
Increasing the $m-M$ adopted for the isochrone in steps of 0.1.
Cluster Age

- Match the main-sequence turnoff.
Isochrones with different ages and best $(m-M)$