Purpose: Computers are ubiquitous in astronomy today – they control telescopes and instruments and are required to display, manipulate, and analyze images from detectors. We will be using a number of programs in this course, including The Sky to control the telescope, CCDSoft to operate the CCD cameras, and IDL for imaging processing and analysis. This lab introduces you to The Sky running on windows PCs and IDL running on the Linux computer Astrolab.

Interactive Data Language (IDL) is a commercial program designed for working with images, and is widely used in astronomy, especially in space sciences. It will be our primary tool for both display and quantitative analysis of the images that we will obtain in this course. As its name implies, IDL is interactive – you can type commands into it one at a time and see the results. It is also a programming language – you can define new commands by writing programs using the basic commands of the language. Some of the “basic” commands are quite complex and most commands are equally able to operate on scalars or one, two, or three-dimensional numeric arrays. This makes it possible to perform complex operations simply. For example, the command \(c = a + b \) could add image \(a \) to image \(b \) and put the result into a new image \(c \), carrying out the operations \(c(1,1) = a(1,1)+b(1,1) \), \(c(1,2)=a(1,2)+b(1,2) \), ..., \(c(n,m)=a(n,m)+b(n,m) \), where \(a \) and \(b \) are two dimensional arrays of numbers, each of size \(n \times m \). If \(a \) and \(b \) were simple numbers, or one or three-dimensional arrays, the same command would add them appropriately and create an output object \(c \) of the correct type and size.

IDL is used by astronomers around the world and a number of freeware program packages are available to perform common astronomical tasks. We have included some of the most popular and useful of these packages in our IDL libraries. These tasks often involve extracting quantitative information from images, such as “how big is a feature in an image?” or “how bright is the image of a star?”. This is rather different from the kinds of image manipulation performed by packages such as Photoshop, which are primarily concerned with manipulating the visual appearance of an image (contrast, color balance, etc.).

Procedure: Each student should work independently on this assignment.

The first part of the lab uses the computers in the classroom or the dome. I have requested that you get key-card access to these locations (and the building) for the rest of the course. I will keep you posted on progress. If you have problems during the semester, see Ms. Parano in Physics & Astronomy room 217 during normal working hours (8:00 AM – noon, 1:00 – 4:30 PM).

The second part of the lab uses the computer Astrolab, which lives in the machine room of the Serin Physics Lab. You will connect to this computer using the VNC program, which gives you remote access to a desktop on Astrolab. You can use VNC on the computers in the classroom, but you will probably find it more convenient to set up VNC on other computers (there is also a web-browser option). So,
first step for this part is to follow the instructions on the VNC write-up handed out in class and available on the class websites.

Part I:
Carry out the following steps on either the computers in the classroom or the computer in the dome. Your report should answer all of the questions below and also state the date and time that you carried out these exercises.

1) Log into one of the computers with username “ph344” and password “orion”.
2) Start The Sky by clicking on the icon on the desktop. Explore the options on the menus and the buttons on the toolbars (note that if you leave the mouse stationary over a button for a short time, a tooltip describing the button will pop up). Pull down the View menu, and click on Status Bar; make sure that the Visible box is checked, and check the Equatorial box in Cursor Position, and Field width, Date, and Time boxes in Other Options (if they are not already checked) and then click on OK – this will display the date and time on the status bar at the bottom of The Sky’s window. Pull down the Data menu, and click on Location. On the Predefined List tab, select the Schommer Observatory under the User-Defined Locations item and then click on Set Location. Under the Data menu, click on Time and set the date to September 7, 2016, and the time to 8:00 pm. Note that the sky display will adjust to the selected location and time. (After you have completed this assignment, you may want to experiment with different sites and/or dates and times – for example, to see what is happening at the Southern African Large Telescope (SALT) observatory, use the South African Astronomy Observatory location from the Observatories database.)
3) Use the toolbar buttons to experiment with selecting the various display viewpoints, zooming and panning, and displaying the various grids, lines, boundaries, and labels. Note that as you zoom in to greater levels of detail (in smaller fields of view) more objects are displayed. Use the toolbar buttons and the Display Explorer item on the View menu to turn on and off the various sorts of objects that The Sky can display. In the Display Explorer, expand Stellar and use Display Properties under the Star item to vary the faint magnitude limit and observe the effect – setting a value of about 3.0 will approximate our light-polluted skies.
4) After you are done with The Sky and exit the program, always answer NO to the question about saving the changes that you have made. Everyone is using the same version of the program and life is much simpler if we maintain a uniform setup.

Q1) What planets are observable from the Schommer Observatory at 8:00 pm on September 14, 2016? List the constellation in which each appears. You can turn on constellation name labels in the Display Explorer under Reference Objects -> Reference Lines -> Constellation Figure.

Q2) Use the Find tool (binocular button) to locate the star Sadr. Make sure that the “More Information” mode of the Object Information box is selected. List all of the names of the star (Flamsteed-Bayer is a name). List the equatorial and horizon coordinates. Finally, list the magnitude, spectral type, and distance (in parsecs) of the star.

Q3) Set the time to 9 pm (21:00:00) and adjust the stellar magnitude limits to display only the stars that are brighter than 1.5 magnitude. Make a sketch of the full sky with these stars on it, and label each with its name, magnitude, and spectral type. On a clear night, find these stars in the real sky and note their relative apparent brightness and color. Include the date and time of this visual observation in your report.

Q4) Adjust the time step to 1 hour and advance the display with the Step Forward button. Describe how the appearance of the sky changes. What major solar system objects (i.e., excluding comets and asteroids) are visible on September 15, 2016 at 6:00 am, just before sunrise?
Q5) What is the first day during the semester (approximately) when the Orion Nebula, M42, is 20 degrees above the eastern horizon at 9 PM? You may need to watch out for the effect of daylight savings time, which ends on November 6th this year.

Q6) Set the date and time to noon, September 1, 2016. Turn off the daytime sky mode, turn on stars down to 6th magnitude, and select a time step of 23 h 56m 04 s (one Sidereal Day). Use the Go Forward button and carefully observe the motion of the planet Jupiter with respect to the stars until September 1, 2017. Describe this motion in detail. Why are the stars stationary in the display when skipping forward by one sidereal day?

Part II

1. Use VNC to connect to your computer account on the “astrolab” computer (see the VNC handout for details). Create a lab1 subdirectory (a folder in Window-speak) and copy the files “moon.fits” and “m31.fits” from the /home/ph344/lab1 directory into your lab1. (For example, you can use the Applications->System Tools->File Browser tool from the menu at the top of your desktop. Or you could issue the appropriate Linux commands in a terminal window, if you know them.)

2. Get a terminal window by clicking on the terminal symbol at the top of your desktop. Start the IDL Developers Environment by typing the command `idlde` (followed by a return). To make an icon on your desktop for easy access, right click on the desktop, and select the “Event Launcher”; click “Browse” and navigate to `/usr/local/bin/idlde`; click on “OK”. Thereafter, clicking on this icon will start idl for you.

3. Set your path in IDL: in IDLDE, click on window/preferences, then select IDL and Paths; click on Insert, and then in the Places window navigate to File System and double click. Then navigate to `/usr/local/src/idl` (make sure idl is highlighted) and click OK. This path will be added to the path window. Check the box preceding this item to include the subdirectories. Then click Apply and OK. You only need to do this once, and then the IDL astronomy libraries will be automatically added to your path every time you run IDL.

4. There is a lot to learn about IDL. In this lab we focus on the image display tool RUPhAst, which is the local Rutgers version of the PHAst tool and is a program written in IDL. A moderately-useful manual for PhAst is available on the class websites. For mysterious reasons perhaps deeply connected to the level of entropy in the universe, before running RUPhAst issue the command “.run ruphast <return>” − TWICE − at the IDL> prompt in the IDL Console (at the bottom of IDL widget). You will see many messages about modules being compiled but should see no error messages. You can then start the RUPhAst widget by typing “ruphast <return>” at the prompt. The first time you start RUPhAst it will ask to create a directory called output − say yes.

5. Read the image moon.fits from your lab1 subdirectory using “Read Fits File” under “File” in the top menu bar. Change the “Mouse Mode” to “Color”. You can then adjust the display contrast and brightness by holding down the left mouse button and dragging: left-right changes the brightness, and up-down changes the contrast. Try zooming the image with the buttons on the PhAst tool, and panning the zoomed image by dragging the green outline in the small window. Note that clicking the right mouse button centers the display on the location of the cursor.

6. Read through the RUPhAst help (rightmost of the RUPhAst menus). See what typing the r, c, and i keys (with the cursor somewhere on the image) does. Use the “i” key to inspect the statistics for the pixel values in an 11 x 11 box centered on the cursor location. You can change the size of the box by typing a number in the “Box Size for Stats” box and then pressing the enter key. The number isn’t
recognized until you press enter – this is a generic feature of the graphical user interface built into IDL.

7. Find the coordinates (x,y) and brightness value of the brightest pixel in the image of the Moon. You may find the “Pixel Table” in the “ImageInfo” menu useful. Measure the diameter (in pixels) of the bright crater Tycho, which is located at about the (x,y) location (1255, 1350) in the image. Plot a row and a column passing through Tycho. Save these plots using the “Create PS” button on the plot window. Select the “Encapsulated (EPS)”, and deselect the “Color Output” settings, and use the “Choose…” button to navigate to your local directory, then change the extent from “.ps” to “.eps” and save the file. You should use a more descriptive file name than the default “phast_plot”. The Open Office Writer can insert these .eps files directly into your lab report. If you want to print these plots, you will need to either copy them to your local computer (using ftp in ssh) and then use your printer, or print them on the 4astro printer located in room 401.

Experiment with the “s” and “t” keys in the vicinity of Tycho. Also include one each of these plots with your lab writeup.

8. Load the m31.fits image using “Read Fits File”. This is a field containing (some of) the galaxy M31 taken with our telescope. What was the exposure time of this image and what date and time was it taken? What filter was used? (Hint: use the “ImageInfo/ImageHeader” menu item.) Use the “Full Range” and “Auto Scale” buttons to experiment with changing the display map. (Full Range maps the brightest pixel to white and the faintest to black; Auto Scale maps a smaller range of “most common” pixel values to the grey scales from black to white.) For this image, even autoscale does not do the best job. Set the minimum (black) display value to 1500 and the maximum (white) to 20000 by typing those numbers in the Min and Max boxes (remembering to hit return). Experiment with adjusting the brightness and contrast using the left mouse button. Estimate the (x,y) coordinates of the bright central nucleus of M31. What is the value of the brightest pixel in the center of the galaxy?

9. With the cursor on the star at (750, 1495), press the “p” key. Report the aperture radius, and inner and outer sky radii chosen by the program and reported in the photometry popup window. Press the “Show Radial Profile” button (if it is not already selected) to see the pixel values (yellow points) and a fitted Gaussian (solid line). Report the FWHM (full width at half maximum intensity), the sky level (in ADU), and the object counts (in ADU) for this star. Note that the “object counts” value is the sum of the pixel values within the aperture radius minus the contribution from the “sky” background, estimated from the values of the pixels between the inner and outer sky radii. Finally, also report the SNR (Signal-to-Noise Ratio) of this measurement.

10. Put the cursor on the star at (2245,455) and press the “p” key. Note how the radial profile of this star has a flat top near a value of 64,000. This star is “saturated” – it is so bright that the pixel signal values were larger than the analog electronics of the CCD detector system could handle, and all information about the bright portions of the star has been lost. What is the reported FWHM of this star? Explain why this is different from the FWHM of the star of the previous question. How would you change the way the image was taken to obtain useful information about the brightness of this star?