\[\vec{E} = -\vec{\nabla} \phi \]
\[q = \int_{V} \rho dV \]
\[\hat{E}(r) = \frac{kQ}{(r-r_1)^2} \]
\[\phi = \frac{kQ}{r} \]
\[\hat{E}(r) = \varepsilon \frac{kQ_i}{(r-r_i)^2} \]
\[\phi = \varepsilon \frac{kQ_i}{r-r_i} \]

\[\vec{E}(r) = \int_{V} \frac{k \rho(r')} {r'^2} dV' \]
\[\phi = \frac{1}{\varepsilon} \int_{V} \frac{k \rho(r')} {r'^2} dV' \]

Gauss's Law
\[\int_{V} \vec{E} \cdot d\vec{A} = \Phi = \frac{q}{\varepsilon_0} \]

Useful for symmetric situations

\[\text{U} = \frac{1}{2} \int_{V} E^2 dV \]

\[\text{U} = \frac{1}{2} \int_{V} \Phi dV \]

Later in these notes
Applications

Like 2Q is fixed at +R, -R on y axis

Can you put charges -8 at some \(r \) on x axis, so stable?

Intuition: Small \(|Q| \), \(r \to 0 \)

Large \(|Q| \), \(r \to \infty \), no stable solution

\[
F = \frac{kQq}{r^2}\]

\[
F = \frac{kQq}{(R^2 + r^2)}\]

\[
\frac{kQ^2}{4r^2} = 2 \frac{kQq}{(R^2 + r^2)} \frac{r}{r^2 + q^2} \]

\[
\frac{q}{4r^2} = \frac{2Qr}{(R^2 + r^2)^{3/2}} \]

\[
(R^2 + r^2)^{3/2} = 8Q^2 \frac{r^2}{6} \]

\[
R^2 + r^2 = 4 \left(\frac{Q}{8} \right)^{3/2} r^2 \]

\[
R^2 = \left[4 \left(\frac{Q}{8} \right)^{3/2} - 1 \right] r^2 \]

\[
r^2 = \frac{R^2}{\left[4 \left(\frac{Q}{8} \right)^{3/2} - 1 \right]} \]

If \(Q = Q \), \(r = R/\sqrt{3} \)

Note: For \(Q > Q \)

denominator < 0

r imaginary

\(\Rightarrow \) No stable solution

- \(Q \)'s \(\to \infty \)

as intuition above

\[
\frac{kQ^2}{4r^2} \to \frac{kQ^2}{4r^2} \cdot \frac{1}{4r^2} \cdot \frac{1}{2} \]

OK
Ring of charge, distance \(r \) from origin, charge \(\rho \), density \(\lambda = \frac{\rho}{2\pi r} \).

What is \(\rho \) at origin?

\[
\rho = \frac{\int dV}{r} = k \lambda \int_0^r \frac{R dr}{r^2 + z^2}
\]

\[
= \pi k \frac{\rho}{2\pi r} \frac{R}{\sqrt{r^2 + z^2}}
\]

All charge same distance from origin, so if we just wrote \(\rho = \frac{k\rho}{r} \frac{R}{\sqrt{r^2 + z^2}} \), we would have been right.

What if we use a cone of charge?

Surface charge \(\sigma \) on the sides. How to do? Add up circles (integrate).

Note area element from integrating along surface, not \(z \). Integrate \(\int \sigma dz \) \(d\theta \) is larger.

\[
\rho = k \sigma 2\pi r \frac{z}{z_0} dz
\]

\[
= k \sigma 2\pi r \frac{z}{z_0} \frac{dz}{\sqrt{r^2 + z^2}}
\]

\[
= k \sigma 2\pi R \frac{z}{z_0} \frac{dz}{\sqrt{r^2 + z^2}}
\]

\[
= k \sigma 2\pi R \frac{z}{z_0} \frac{dz}{\sqrt{r^2 + z^2}}
\]
what is flux through box?
\[\Phi = \frac{8 \text{enc}}{\varepsilon_0} \]

what is flux through side?
\[\Phi_{\text{enc. at center}} = \frac{\varepsilon_0}{\varepsilon_0} \ 	ext{for each side.} \]

what if \(\Phi \) is at a corner of the box???

For the 3 sides that touch that corner, \(\Phi \) is in the plane, so \(\vec{E} \parallel dA \)
so \(\Phi = \int \vec{E} \cdot dA = 0 \)

Bad specious reasoning: \(\Phi \) on edge, \(\Phi \) half in, half out, so each side has \(\Phi = \frac{1}{2} \times \varepsilon_0 \frac{8 \text{enc}}{\varepsilon_0} \times \frac{1}{3} = \frac{8 \text{enc}}{3 \varepsilon_0} \)

Wrong!

Correct verbal reasoning: could have 8 cubes meet at the corner, so each get \(\frac{8 \text{enc}}{8 \varepsilon_0} \) because they are symmetric, mirror images. Each of the 3 for sides also are symmetric edge the same \(\Phi \), so

\[\Phi_{\text{side}} = \frac{1}{3} \times \frac{8 \text{enc}}{\varepsilon_0} = \frac{8 \text{enc}}{24 \varepsilon_0} \]
\[U = W = \int F \cdot dx = \int_0^\infty \left(k \frac{q_1 q_2}{r^2} \right) \, dt = \frac{k q_1 q_2}{r} \]

\[F \text{ and } dx \text{ in opposite directions} \]

\[\text{No surprise} \]

\[\text{Why not } \frac{k q_1 q_2}{r} + \frac{k q_2 q_3}{r} ? \text{ one was fixed} \]

\[\text{For a set of charges, count each pair once (superposition)} \]

\[U = \frac{1}{2} \sum_{i < j} \frac{k q_i q_j}{r_{ij}} \]

\[\sum_{i < j} \text{ counts each pair } 2 \times \]

\[\text{spherical: last time showed} \]

\[U_{\text{sphere}} = \frac{1}{2} \frac{Q^2}{4\pi \varepsilon_0 R} \]

\[U_{\text{shell}} = \frac{1}{2} \frac{Q^2}{4\pi \varepsilon_0 R} \]

\[\Rightarrow \frac{Q}{4\pi \varepsilon_0 R} \]

\[\text{"r" \"q"} \]

\[\text{sphere } U = \left(\frac{3}{5} \right) \frac{1}{4\pi \varepsilon_0} \frac{Q^2}{r^2} ? \]

\[\text{Can we get this from } \frac{1}{2} \int p \varphi \, dV ? \]
Sphere

\[\Phi_{\text{outside}} = \frac{Q}{4\pi\varepsilon_0 R} \]

\[\oint S \cdot d\mathbf{A} = \frac{Q}{\varepsilon_0} \]

\[E \cdot 4\pi r^2 = \frac{Q}{4\pi R^3} \cdot 4\pi r^3 \cdot \frac{1}{\varepsilon_0} \]

\[E = \frac{1}{4\pi r^2} \cdot \frac{Q}{\varepsilon_0} \cdot \frac{r^3}{R^3} = \frac{Q}{4\pi\varepsilon_0 R^3} \]

so \[\Phi_{r \leq R} (r) = \frac{Q}{4\pi\varepsilon_0 R} + \int_{r}^{R} \frac{\frac{Q}{4\pi\varepsilon_0 R^3} dr}{r} \]

\[= \frac{Q}{4\pi\varepsilon_0 R} + \frac{Q}{4\pi\varepsilon_0 R^3} \left(\frac{r^2}{2} - \frac{R^2}{2} \right) \]

\[= \frac{Q}{4\pi\varepsilon_0 R} + \frac{Q}{8\pi\varepsilon_0 R} - \frac{Q}{8\pi\varepsilon_0 R^3} r^2 \]

\[= \frac{Q}{8\pi\varepsilon_0 R^3} (3R^2 - r^2) \]

\[u = \frac{1}{2} \oint \mathbf{r} \times p \cdot d\mathbf{r} = \frac{1}{2} \cdot 4\pi \sum_{0}^{\infty} \frac{Q}{\frac{4}{3} \pi R^3} \cdot \frac{Q}{8\pi\varepsilon_0 R^3} (3R^2 - r^2) \cdot r^3 dr \]

\[= \frac{3Q^2}{16\pi\varepsilon_0 R^2} \left[\frac{3R^2 r^3}{3} - \frac{r^5}{5} \right]_0 \]

\[= \frac{3Q^2}{16\pi\varepsilon_0 R^6} \left[R^5 - R^5 \right] \]

\[= \frac{3Q^2}{16\pi\varepsilon_0 R^6} \cdot \frac{4}{5} R^5 \]

\[= \frac{3Q^2}{5} \frac{R^5}{16\pi\varepsilon_0 R^6} \]

\[= \left(\frac{3}{5} \right) \left(\frac{1}{4\pi\varepsilon_0} \right) \frac{Q^2}{R^4} \]

same as before