LECTURE 14

INTERFERENCE DIFFRACTION CONTINUED

SUMMARY - INTERFERENCE

\[OP_2 - OP_1 = \sqrt{L^2 + \left(y + \frac{D}{2}\right)^2} - \sqrt{L^2 + \left(y - \frac{D}{2}\right)^2} \]

\[= n\lambda \quad \text{CONSTRUCTIVE} \quad n = 0, \frac{1}{2}, \frac{3}{2}, \ldots \]

\[(m + \frac{1}{2})\lambda \quad \text{DESTRUCTIVE} \quad m = 0, 1, 2, \ldots \]

FRAUNHOFER LIMIT \(L \gg \left(y + \frac{D}{2}\right) \)

EXTRA DISTANCE = \(D \sin \theta = D \frac{y}{L} \)

CONSTRUCTIVE \(\frac{Dy}{L} = n\lambda \quad y = y_n \)

\[\frac{Dy_n}{L} = n\lambda \]

\[y_n = \frac{n\lambda L}{D} \quad \frac{1}{D} \quad \text{SMALLER D} \]

\[y_n = \frac{n\lambda L}{D} \quad \frac{1}{D} \quad \text{LARGER Y} \]

\[\frac{D}{D_1} \quad \left\{ D_2 < D_1 \right\} \]
INTERFERENCE / DIFFRACTION

SUMMARY

BIGGER λ BIGGER γ

$\lambda \cdot \text{DSIN} \theta = \lambda_1$

$\nu \cdot \text{DSIN} \theta = \lambda_2$

BEND THE RAY MORE TO ACCOMODATE LARGER λ.

N SOURCES.

$\delta = \frac{2\pi}{\lambda_0}$

$\delta = \frac{2\pi}{\Delta \lambda}.

\delta = \text{DSIN} \theta.$

$1 + e^{i \delta} + e^{2i \delta} + \ldots + e^{i(N-1)\delta}$

$1 = \frac{A^{1/2}}{\sin \frac{\delta}{2}}$

$|R_1| = A \left| \frac{\sin \frac{N\delta}{2}}{\sin \frac{\delta}{2}} \right|$

$A^2 \frac{N^2}{\delta^2} = \frac{(AN)^2}{\frac{2}{\pi^2}} \frac{2}{\pi^2} \frac{(AN)^2}{\frac{2}{\pi^2}}$

$\delta = 0$

$\delta \rightarrow$

$\delta_1 = \pi \rightarrow$
INTERFERENCE

ALGEBRAIC METHOD N-SLICE

\[1 + e^{is} + e^{2is} + \ldots + e^{(N-1)is}\]

\[x = e^{is}\]

\[1 + x + x^2 + \ldots + x^{N-1}\]

NOTE \(1 + x + x^2 + \ldots + x^\infty = \frac{1}{1-x} \text{ Multiply by } (1-x)\)

\[1 + x + x^2 + \ldots + x^\infty \]

\[\frac{1}{1-x} \cdot \frac{1}{1-x} \text{ (1-x)}\]

\[1 + x + x^2 + \ldots + x^\infty \]

\[-x - x^2 - \ldots - x^\infty\]

\[1 + 0 + 0 = 0\]

WRITE \((1 + x + \ldots + x^{N-1}) = (1 + x + \ldots + x^\infty) - (x + x^2 + \ldots + x^N)\)

\[\frac{1}{1-x} \cdot \frac{1}{1-x} (1-x)\]

\[= \frac{1-x^N}{1-x} = \frac{1 - e^{in\delta}}{1 - e^{i\delta}} = \frac{e^{in\delta/2} (e^{-in\delta/2} - e^{in\delta/2})}{e^{i\delta/2} (e^{-i\delta/2} - e^{i\delta/2})}

\[\sin \delta = e^{-i\delta} - e^{i\delta}\]

\[e^{-i\delta} (e^{in\delta/2} - \frac{8 i n \delta}{\sin \delta/2})\]

\[= e^{i(n+1)\delta/2} \frac{\sin \delta}{\sin \delta/2}\]

MAGNITUDE \[\frac{\sin \delta/2}{\sin \delta/2}\]
The large peaks occur when the denominator in \(R \) which is \(\sin \frac{\delta}{2} \) is zero. The \(R = 0/0 \) but the answer is \(R = \frac{A}{N} \) since the vectors line up.

At \(\delta = 2\pi, 4\pi, \ldots \),

\[\delta = \frac{2 \pi n}{\lambda} \]

\[dsin \theta = \frac{2 \pi n \lambda}{\lambda} \]

\[n = \text{position of principal maxima} \]

In a diffraction case of an opening, the initial behavior is similar but there is only one main peak.

This behavior does not repeat.
INTERFERENCE - 2 PLANE WAVES MOVING AT AN \(\theta \)
WITH RESPECT TO EACH OTHER.

\[
\begin{align*}
\text{Crest of 1} & \quad \text{Valley of 2} \\
\text{Crest of 2} & \quad \text{Valley of 1} \\
\end{align*}
\]

\[
\begin{align*}
\theta & = 90 - \theta \\
\sin \theta & = \frac{1/2}{AC} \\
AC & = \frac{1/2}{\sin \theta} \\
\text{Distance between max & zero} & \text{ Given AC, } \theta \text{ is determined.} \\
\text{Interference pattern of 1 & 2 is a} \\
\text{blues of bright and dark lines.} \\
\text{used in holography.} \\
\end{align*}
\]
Figure 13.50 (a) The creation of a transmission hologram of a toy locomotive. (b) Replay of a transmission hologram.

Scattered wave from object plus reference wave make an interference pattern on a film. Interference pattern contains complete information about object wave - amplitude of wave including its phase.
INTERFERENCE - (HOLOGRAPHY)

OBJECT EMITS WAVES AS A BUNCH OF POINT SOURCES WHICH INTERFERS WITH THE REFERENCE WAVE

PLANE WAVE

Etc.

CONSTRUCTIVE

D - DESTRUCTIVE

POINT SOURCE

LOOK AT FRINGES AT DISTANCE \(l \), \(b \gg \lambda \)

\[\frac{y}{a_1} = \sqrt{(l + \frac{1}{2})^2 - l^2} = \sqrt{1 + \frac{4 \lambda}{\lambda^2} + \frac{\lambda^2}{4}} = \sqrt{1 + \frac{4 \lambda^2}{4 \lambda^2}} \]

\[\approx \sqrt{1 + \frac{\lambda^2}{4 \lambda^2}} = \sqrt{1 + \frac{1}{4}} = \sqrt{1 + \frac{1}{4}} \]

\[\frac{y}{b_2} = \sqrt{(l + \frac{3}{2})^2 - l^2} = \sqrt{3 + 3 \lambda^2 + \frac{9 \lambda^2}{4}} = \sqrt{3 + \frac{9 \lambda^2}{4}} \]

Etc.

GIVEN \(\lambda \) FROM THE FRINGE SPACING YOU CAN FIND \(l \) AND POSITION OF POINT SOURCE.

FRINGES ARE CIRCLES FOR POINT SOURCE \(E \) PLANE WAVE - SPHERE INTERSECTS PLANE TO MAKE CIRCLES
\[
\vec{R} = A + Be^{i(kx - \omega t)} \\
A = \sqrt{x^2 + y^2} \quad \frac{\partial}{\partial x} = \frac{\partial y}{\partial y}
\]

\[
|R|^2 = \left((A + B \cos \theta) + iB \sin \theta \right)^2 = A^2 + B^2 + 2AB \cos \theta + B^2 \sin^2 \theta
\]

\[
|\vec{R}|^2 = A^2 + B^2 + 2AB \cos \theta + B^2 \sin^2 \theta
\]

\[
\sin^2 \theta + \cos^2 \theta = 1 \\
\theta = \frac{2\pi}{2}
\]

Conventional photography just measures \(|B|^2 \), the object wave.

A holographic photo uses the interference pattern of a reference wave & object wave to retain information about the phase of the object wave.

\[
\omega = \frac{\Delta \lambda}{\lambda} = \frac{\beta}{\lambda} \\
d = \frac{\omega \Delta x}{\lambda}
\]

See figure for \(|R|^2\) from Mathematica.
Interference Pattern

Source Amplitude \(A \)

Plane Wave Amplitude \(B \)

\[
\text{int}[A, B, D, y, x] = (A^2 + B^2) + 2AB \cos \left[\frac{2\pi \sqrt{2Dy + y^2}}{x} \right]
\]

\[D = \frac{\lambda}{\text{sin} \theta} \]

\(\lambda = 2 \)

\(A = 2 \)
\(B = 1 \)
\(D = 10 \)

\[\text{Plot}[\text{int}[2, 1, 10, y, 2.], \{y, 0, 5\}] \]

\[\text{Plot}[\text{int}[1, 1, 10, y, 2.], \{y, 0, 5\}] \]

\[\text{Plot}[\text{int}[2, 1, 10, y, .5], \{y, 0, 5\}] \]
Huygens Principle & Snell's Law

Picture I

TIME $t = 0$ (A) intersects boundary and a spherical wave is emitted which travels at u_e.

At time $t = \frac{d_{BB'}}{u_e}$, (B) \rightarrow (B') and B' now emits a spherical wave.

Picture II

$A \rightarrow A'$ which is a distance:

$$d_{AA'} = \frac{u_e t}{u_e} = \frac{d_{BB'}}{u_e}$$

Picture I: $\sin \theta_1 = \frac{d_{BB'}}{d_{AA'}} = \frac{d_{BB'}}{r}$

Picture II: $\sin \theta_2 = \frac{d_{AA'}}{l} = \frac{d_{AA'}}{r}$

From 1:

$$\frac{\sin \theta_1}{u_e} = \frac{\sin \theta_2}{u_e}$$
Huygens Spherical Wave

New Wave Front

This wave front has point sources on it that generate new spherical waves. The tangent to these waves is the new spherical wave front.
Diffraction

Many source interference → continuous limit

Diffraction has played an important role in the history of physics & biology.

1) Electron diffraction confirmed wave aspects of particles.

2) Diffraction was important in the discovery of the double helix in DNA.

In acoustics is diffraction important in sound emitted by instruments? - No.

Is diffraction important in room acoustics? Depends on λ & obstacles.

Interference - each small opening in the source of a wave

Huygens:

Each point on a wavefront is the source of a spherical wave.

New wave front (draw tangent to the emitted circles)
Huygens Construction and Instruments

Point sources for new wavefront

Instrument such as a trumpet

Huygens Construction and Obstacles

Opening

Interference pattern at distance L

L large
Fraunhofer limit

Three quantities λ, W, L

Diffraction important when

λ ~ W if λ < W classical limit

L >> λ, W Fraunhofer limit — picture above

L ~ λW Fresnel limit
The diffraction result is the limit \(N \to \infty, D \to 0 \) of the interference result for \(N \)-slits.

\[
\mathcal{D} \downarrow ~ \mathcal{D} \uparrow \quad N \to \infty \quad \frac{N}{D} \to W = \text{width of opening}
\]

\(A \) is amplitude for 1 outgoing wave needed \(NA \) finite for \(N \to \infty \)

\[
R = A \frac{\sin N \delta/2}{\sin \delta/2} \quad \delta = \frac{\lambda DA}{2DS \sin \theta} = \frac{2\pi DS \sin \theta}{\lambda}
\]

\[
\frac{N \delta}{2} = \frac{\pi (HD) \sin \theta}{\lambda} = \frac{\pi W \sin \theta}{\lambda}
\]

\[
\frac{\delta}{2} = \frac{1}{N} \frac{N \delta}{2} = \frac{1}{N} \left(\frac{\pi W \sin \theta}{\lambda} \right)
\]

\[
R = A^2 \frac{\sin^2 N \delta}{2} = A^2 \frac{\sin^2 \left(\frac{\pi W \sin \theta}{\lambda} \right)}{\sin \delta/2} = \frac{\sin^2 \left(\frac{\pi W \sin \theta}{\lambda} \right)}{N \lambda}
\]

\[
\sin x \approx x, \quad \sin^2 \left(\frac{\pi W \sin \theta}{\lambda} \right) \approx \left(\frac{\pi W \sin \theta}{\lambda} \right)^2
\]

\[
I = \text{Intensity} = \left(NA \right)^2 \frac{\sin^2 \left(\frac{\pi W \sin \theta}{\lambda} \right)}{N \lambda}
\]

\[
I_0 = \left(NA \right)^2 \quad \frac{\left(\frac{\pi W \sin \theta}{\lambda} \right)^2}{\left(\frac{\pi W \sin \theta}{\lambda} \right)^2}
\]

\[
\sin^2 x \to 1 \quad \text{as} \quad x \to 0 \quad x \to 0 \quad \theta \to 0
\]

\[
I = I_0 \frac{\sin^2 \frac{\pi W \sin \theta}{\lambda}}{\frac{\pi W \sin \theta}{\lambda}^2} \quad I_0 = \text{central intensity}
\]

\[
x = \frac{\pi W \sin \theta}{\lambda}
\]
Diffraction

\[I = I_0 \frac{\sin^2 \alpha}{\alpha^2} \quad \alpha = \frac{\pi}{\lambda} \sin \theta \]

\[\sin \theta = \frac{y}{L} \quad \frac{2\lambda y}{2L} \]

Zeroes. \(\sin^2 \alpha = 0 \Rightarrow \sin \alpha = 0 \)

\(\alpha = \pi, 2\pi, 3\pi, \ldots \) not a zero of \(I \sim \sin^2 \alpha \)

\[\frac{\pi}{\lambda} \sin \theta = \frac{n \pi}{2} \]

[\(n \) zeroes \(\sin \theta = \frac{n \lambda}{2} \) \(n = 1 \)]

\(\sin \theta = \frac{\lambda}{2} \) looks constructive

\(\sin \theta = \frac{\lambda}{2} \) looks destructive

It is destructive
DIFFRACTION

\[W \sin \theta = \frac{\lambda}{2} \quad \text{i.e. } \frac{1}{2} \lambda \text{ in extra distance} \]

Every point source in upper half has a corresponding point in lower half out of phase with it.

\[n = 2. \quad W \sin \theta = 2\lambda \quad \text{for next zero} \]

\[\frac{W}{4} \sin \theta = \frac{\lambda}{2} \quad \text{Divide opening in 4 parts.} \]

4 regions

1. \(\frac{W}{4} \)
2. \(\frac{W}{4} \)
3. \(\frac{W}{4} \)
4. \(\frac{W}{4} \)

Extra distance = \(\frac{\lambda}{2} \)

Region 1 & 2 are out of phase by \(\frac{\lambda}{2} \)

Region 3 & 4 are out of phase by \(\frac{\lambda}{2} \) \(\Rightarrow \) zero in intensity
DIFFRACTION

BETWEEN 2 ZEROS IS A MAX
1ST ZERO \[\frac{W}{2} \sin \theta = \frac{\lambda}{2} \]
2ND ZERO \[\frac{W}{4} \sin \theta = \frac{\lambda}{2} \]

APPROX EXPRESSION (VERY GOOD)

DIVIDE INTO 3 REGIONS

\[\frac{\lambda}{2} \]

1. & 2. CANCEL OUT

3. IS LEFT ALONE

EXPECT \(\approx \frac{1}{3} \) IN AMPLITUDE

TO BE PRESENT \(\epsilon^4 \)

\(\left(\frac{1}{3} \right)^2 \) IN INTENSITY APPROX \(\approx \frac{I}{9} \)

STRING MODEL
FROM W-SLIT

\[AV \]

\[AV = 2\pi r + 4\pi r = 3\pi r \]

\[r = \frac{AV}{3\pi} \]

\[R = \text{DIAMETER} = 2r \]

1 1/2 TIMES AROUND \(R = \frac{AV}{3 \left(\frac{\pi}{2} \right)} \)
DIFFRACTION

CIRCULAR OPENING.

\[\Theta = \frac{\lambda}{D} \; \text{FOR 1st ZERO.} \]

SLIT

\[\sin \Theta_M = 1.22 \frac{\lambda}{D} = 1.22 \frac{\lambda}{D/2} \approx \frac{\lambda}{D} \; \text{RADINS} \]

NOTE \(\sin \theta < 1 \)

\[\Rightarrow \; 1.22 \frac{\lambda}{D} \leq 1 \]

PUT IN \(\frac{\lambda}{D} \)

\[I = I(0) \left[\frac{2J'(k a \sin \Theta)}{k a \sin \Theta} \right]^2 \]

\[J(x) \sim \frac{x}{2} \quad J(x) \sim \frac{1}{x} \cos \left[x - \frac{\pi}{2} - \frac{\pi}{4} \right] \]

1st ZERO OF \(J(x) \) IS AT \(x = 3.832 \)

2nd - 7.016 \; 3rd - 10.173

\[k a \sin \Theta_M^1 = 3.832 = \frac{2\pi \frac{D}{2}}{\lambda} \cdot \frac{2\pi \frac{D}{2}}{\lambda} \]

\[\sin \Theta_M^1 = \frac{3.832 \lambda}{\frac{D}{2}} = 12197 \frac{\lambda}{D} = 1.22 \frac{\lambda}{D} \]

2nd

\[\sin \Theta_M^2 = \frac{7.016 \lambda}{\frac{D}{2}} = 2.23 \frac{\lambda}{D} \; \sin \Theta_M^2 = 10.173 \frac{\lambda}{D} \]

\[= 3.24 \frac{\lambda}{D} \]
Diffraction
Circular
\[x = \cos \theta \]

\[I = I_0 \left(\frac{2J_1(x)}{x} \right)^2 \quad J = \frac{1}{\sqrt{\pi x}} \cos \left(x - \frac{\pi}{2} - \frac{\theta}{4} \right) \]

\[\approx I_0 \frac{4 r_0}{\pi} \frac{1}{x^3} \cos^2 \left(x - \frac{\pi}{2} - \frac{\theta}{4} \right) \sim \frac{1}{x^3} \]

Approximate zeroes are zeroes of
\[\cos \left(x - \frac{\pi}{2} - \frac{\theta}{4} \right) \]

\[\cos x \]

\[\frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2} \]

\[\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2} \]

\(x \)	\(\pi - \frac{\pi}{2} = \frac{\pi}{2} \)	\(\pi \) = \(\frac{\pi}{2} \) = 3.93	3.832
\(x_1 \)	\(\frac{\pi}{2} \)	\(\frac{\pi}{2} \) = 3.93	3.832
\(x_2 \)	\(\frac{\pi}{2} \)	\(\frac{\pi}{2} \) = 7.069	7.016
\(x_3 \)	\(\frac{\pi}{2} \)	\(\frac{\pi}{2} \) = 10.01	10.17

Table exact
DIFFRACTION

A4: \(f = 440 \text{ Hz}, \quad v = 330 \text{ m/s} \)

\[\lambda = \frac{330}{440} = \frac{3}{4} \text{ m} \]

Are these waves going to interfere - diffract?

\[D \approx 5 \text{ cm} \]

\[\sin \theta = 1.22 \frac{\lambda}{D} \approx \frac{\lambda}{D} \]

Need \(\lambda < D \) other \(\sin \theta > 1 \) which can't be.

\[\frac{3}{4} \lambda > 5 \text{ cm} \quad \text{No diffraction} \]

3 octaves above \(f = 8.440 \text{ Hz} = 3520 \text{ Hz} \)

\[A_7 \quad 2^3 \cdot 440 \text{ Hz} \]

\[\lambda = \frac{330}{440} \cdot \frac{1}{4} = \frac{3}{4 \cdot 8} = \frac{3}{32} \approx \frac{1}{10} \text{ m} = 10 \text{ cm} \]

\[D \approx 5 \text{ cm} \]

Still NO DIFFRACTION

\[A_8 \quad \lambda = \frac{3}{4.16} \cdot 20 = 5 \text{ cm} \]

Still none.

DOORWAY

\[\lambda = \frac{3}{4.16} \]

This is not circular.

\[\min \text{ WS/NA} = \lambda \]

\[\lambda = \sqrt{W} \]

It will spread out but NO MIN.

3 m

\[\lambda = 0.75 \]
Diffraction from a rectangular opening

\[\sin \theta_x = \frac{x}{L} \]
\[\sin \theta_y = \frac{y}{L} \]

2D is a generalization of 1-D

X-direction
\[I_x(\alpha) = I_x(0) \frac{\sin^2 \alpha}{\alpha^2} \]
\[\alpha = \frac{\pi}{2} \frac{W_s \sin \theta_x}{x} \]
\[= \frac{K W_s x}{2} \frac{x}{L} \]

Y-direction
\[I_y(\beta) = I_y(0) \frac{\sin^2 \beta}{\beta^2} \]
\[\beta = \frac{\pi}{2} \frac{W_s \sin \theta_y}{y} \]
\[= \frac{K W_s y}{2} \frac{y}{L} \]

\[I_{x'y'} = I_x(\alpha) I_y(\beta) \]
\[= I(0) \frac{\sin^2 x \sin^2 y}{\alpha^2 \beta^2} \]
NON-LINEAR SYSTEMS

ω, 2ω, 3ω out also

NON-LINEAR SYSTEM

ω_1, ω_2, ω_3

Ex. 7

$T = mg \cos \theta$

$-T = -lmg \sin \theta = I \frac{d^2 \theta}{dt^2}$

$-g \sin \theta = l \frac{d^2 \theta}{dt^2}$

Small θ, $\sin \theta = \theta$, $-\frac{g}{l} \theta = \frac{d^2 \theta}{dt^2}$

$\theta = \theta_0 e^{i\omega t}$

θ_0 is constant, $\theta_0 e^{i\omega t}$

$-\frac{g}{l} \theta_0 e^{i\omega t} = -\omega^2 \theta_0 e^{i\omega t}$

$\omega = \sqrt{\frac{g}{l}}$

$\sin \theta = \theta - \frac{\theta^3}{3!}$

$-\frac{g}{l} (\theta - \frac{\theta^3}{3!}) = \frac{d^2 \theta}{dt^2}$

Try $\theta_0 e^{i\omega t}$

$-\frac{g}{l} (\theta_0 e^{i\omega t} - \frac{\theta_0^3}{3!} e^{3i\omega t}) = -\omega^2 \theta_0 e^{i\omega t}$

No solution
SECTION 8.8 AURAL HARMONICS

SINGLE TONE AT f IF SUFFICIENTLY LOUD
CAN PRODUCE ADDITIONAL PITCHES AT 2f, 3f, ...
CALLED AURAL HARMONICS.

POWER LAW RESPONSE OF THE EAR
\[x = a_0 + a_1 p + a_2 p^2 + a_3 p^3 + \ldots \]

p is sound pressure

a's determined experimentally.

\(p^2 \) generates the second harmonic of
the original pitch.

\(p^3 \) generates the third harmonic of
the original pitch.

Diagram

\[A_i = \frac{a(e^{i\omega t} + e^{-i\omega t})}{2} + \frac{b(e^{i\omega t} + e^{-2i\omega t})}{2} \]

\[A_i = a_0 + a_1 [A_i] + a_2 [A_i]^2 \]

same as incident
\[[A_6]^2 = \frac{1}{2} \left(e^{i\omega_1 t} + e^{-i\omega_1 t} \right)^2 \]
\[+ \frac{1}{2} \left(e^{i\omega_2 t} + e^{-i\omega_2 t} \right)^2 \]
\[+ 2a \frac{b}{2} \left(e^{i\omega_1 t} + e^{-i\omega_1 t} \right) \left(e^{i\omega_2 t} + e^{-i\omega_2 t} \right) \]
\[= \frac{a^2}{2} \left(e^{2i\omega_1 t} + e^{-2i\omega_1 t} + 2 \right)^2 + \frac{b^2}{2} \left(e^{2i\omega_2 t} + e^{-2i\omega_2 t} + 2 \right) \]
\[+ \frac{ab}{2} \left(e^{i(\omega_1 + \omega_2) t} + e^{i(\omega_1 - \omega_2) t} \right) + \frac{ab}{2} \left(e^{i(\omega_2 - \omega_1) t} + e^{i(\omega_2 + \omega_1) t} \right) \]

\(\omega_1 > \omega_2 \)

Cubic term \([A_6]^3 = [A_6] [A_6]^2 \)

Will lead to more sidebands.