Lecture 18.

1. Maxwell-Boltzmann Energy distribution (see last lecture note)
 \[P(E) = \frac{2}{N_{\text{vol}}} \beta^{3/2} E^{3/2} e^{-\beta E} \]
 \# of molecules @ E; \(N(E) \approx N \cdot P(E) \)

 Density of States: \(g(E) \propto E^{3/2} \) for quadratic degree of freedom.

2. Quantum Statistics.
 \((\lambda \geq a) \).

 Wave functions of particles overlap. Need to consider quantum nature of microscopic particles, i.e. identical & indistinguishable.

 E.g., for 2 particles:
 \[|\psi(1,2)|^2 = |\psi(2,1)|^2 \]
 \[\Rightarrow \psi(1,2) = \pm \psi(2,1). \]

 \(" " : \text{Bosons} \quad \text{Bose-Einstein Stat.} \)

 \(" " : \text{Fermions} \quad \text{Fermi-Dirac Stat.} \)

 Anti-symmetric wave functions \(\rightarrow \) Pauli exclusion principle.

 Generalized to many particles case.

 # of particles allowed on A quantum states w/ energy \(E \):
 \[n(E) = \left\{ \begin{array}{ll}
 0, 1 & \text{Fermions (no double occupancy),}
 0, 1, 2, \ldots & \text{Bosons (can be any #).}
 \end{array} \right. \]

 E.g., 4 particles in a 1D infinite well. (ignore spin) What's the lowest energy state?

 \[n=4 \]
 \[n=3 \]
 \[n=2 \]
 \[n=1 \]

 Fermion

 if \(N \) is large (e.g., \(N_{\text{Av}} \)).

 Recall \(PV = N \cdot 2 \langle kT \rangle \).

 Finite \(E_F \) \(\rightarrow \) finite pressure @ OK for \(E \) Fermi gas!

 \[E \]
 \[E \]
 \[E \]

 Boson.

 Fermions

 Bosons

 Bose-Einstein Condensation (BEC)
Quantum text.

* Bose-Einstein distribution: \(f_{BE}(\varepsilon) = \frac{1}{e^{\beta(\varepsilon - \mu)} - 1} \) [\(\varepsilon \gg \mu \) \(f_{BE} \to 1 \)]

* Fermi-Dirac distribution: \(f_{FD}(\varepsilon) = \frac{1}{e^{\beta(\varepsilon - \mu)} + 1} \) [\(\varepsilon \ll \mu \) \(f_{FD} \to f_{MB} \)]

\(\mu \): chemical potential [tendency of particles to diffuse out of system]

Note: if \(\beta(\varepsilon - \mu) \) is large \(e^{\beta(\varepsilon - \mu)} \gg 1 \) \(\Rightarrow f_{BE} \approx f_{FD} \approx f_{MB} = e^{-\beta(\varepsilon - \mu)} \)

\(f_{MB} \) is a good approximation.

Fermions: \(e^- \), \(n \), \(p \), ...

Bosons: photons, phonons, Higgs, \(W^\pm \), \(Z \), ...

For metals (e.g. Cu, Ag, Au), \(\mu \sim 4-5\ eV \), \(kBT \sim 26\ meV \)

\(\log T < \mu \) i.e. zero T limit.

Degenerate Fermi gas (DFG)

The electronic properties are determined by \(e^- \) near \(E_F \) (more in Thermal Physics)

For photon gas (\(\mu = 0 \)), the energy density \(u(\varepsilon) \propto \frac{e^{\varepsilon/kT} - 1}{e^{\varepsilon/kT} + 1} \)

\(\rightarrow \) Planck formula of blackbody radiation.

(more in Thermal Physics)
Bonds in molecules & Solid.

1. **Ionic bond.** E.g. NaCl, \(\Theta \Theta \Theta \) electrostatic interaction.

2. **Covalent bond:** Molecules: \(\text{H}_2, \text{N}_2, \text{O}_2, \text{H}_2\text{O} \) sharing equivalent electrons.

3. **Metallic bond:** (Metals, e.g. Cu, Ag, Au) sharing mobile electrons.

4. **van der Waals bond:** Weak attraction between neutral molecules.

5. **Hydrogen bond:** Strong attraction between \(\text{H} \) in one molecule and an electronegative atom in another.

\[\text{e.g. H}_2\text{O} \]

\[\text{HF} \]

\[\text{NH}_3 \]

Molecular spectroscopy. (rotation + vibration).

Rotation. \(E = \frac{l^2}{2I} \) \(l \): angular momentum

\(I \): moment of inertia \(I = \sum m_i r_i^2 \)

\(\alpha \text{M}. \) \(L^2 = \hbar (l+1) \)

\(\Rightarrow E_l = \frac{\hbar (l+1)}{2I} \)

Typical energy scale: \(\frac{\hbar^2}{2I} \sim \text{meV} \) microwave \(\sim \) Far IR.

Vibration. \(E_n = \hbar \omega \left(n + \frac{1}{2} \right) \)

\(\omega = \sqrt{\frac{k}{m}} \) \(m \): mass

\(\hbar \omega \sim 0.1 \text{ eV} \) \(\Rightarrow E_l \). Infrared.

Energy spectrum can be studied by

Optical spectroscopy (Infrared or Raman).

Note: We will not cover 10.2-10.6 in this course.