Solution

********** Multiple-choice problems **********

1. A nearby star is 4 light years away from the earth. If an astronaut travels from the earth to the star with a speed of 0.8 c, how much time (unit: years) will have elapsed on his clock at the end of the journey?
 a) 2.4 b) 5 c) 4 d) 3 e) 8.3

2. A Michelson interferometer operates with a laser of wavelength \(\lambda = 600 \text{ nm} \). One arm of the interferometer has a mirror at the end of a copper bar, and the light path goes out parallel to the bar and is reflected by the mirror back along the same path. As the bar is cooled from \(T = 300 \text{ K} \) to \(T = 77 \text{ K} \), a total of 125 dark fringes are seen to pass through the eyepiece. It is concluded that the copper bar has contracted by:
 a) \(7.5 \times 10^{-5} \text{ m} \)
 b) \(3.75 \times 10^{-5} \text{ m} \)
 c) \(1.5 \times 10^{-4} \text{ m} \)
 d) \(3 \times 10^{-4} \text{ m} \)
 e) \(1.9 \times 10^{-5} \text{ m} \)

3. Two events occur 100 m apart with an intervening time interval of 0.60 \(\mu \text{s} \). The speed of a reference frame in which they occur at the same coordinate is:
 a) 0
 b) 0.25c
 c) 0.56c
 d) 1.1c
 e) 1.8c

4. A double-slit experiment of electron uses a slit spacing \(d \) and electrons with energy \(E \). Here \(E \ll m_e \), i.e. non-relativistic limit. On a screen located a long distance \(L \) away (\(L \gg d \)), the interference pattern shows that adjacent bright fringes are separated by a small distance \(y \). If the electron energy \(E \) is then doubled, what will be the new separation between adjacent bright fringes?
 a) \(4y \)
 b) \(y/\sqrt{2} \)
 c) \(y/4 \)
 d) \(y/2 \)
 e) \(\sqrt{2}y \)
5. The threshold wavelength for photoemission in calcium is 384 nm. If the light of wavelength 200 nm is used, what will be the photoelectric stopping potential \(V_s \) in volts?

- \(V_s < 2.1 \)
- \(2.1 \leq V_s < 3.1 \)
- \(3.1 \leq V_s < 4.1 \)
- \(4.1 \leq V_s < 5.1 \)
- \(V_s \geq 5.1 \)

\[
eV_2 = \frac{h \nu}{\lambda} - \phi \Rightarrow \frac{h \nu}{\lambda \hbar} - \phi = \frac{1240 \text{ nm - ev}}{384} = 3.23 \text{ (eV)}
\]

\[
eV_2 = \frac{h \nu}{\lambda} - \phi = \frac{1240}{200} - 3.23 = 6.2 - 3.23 = 2.97 \text{ (eV)}
\]

6. In a metal, at the absolute zero of temperature

- all motion ceases
- the Fermi energy is zero
- the Fermi speed is zero
- the average kinetic energy of the conduction electrons is zero
- the average kinetic energy of the conduction electrons differs significantly from zero

7. The figure shows the Fermi function for a solid at two different temperatures \(T_A \) and \(T_B \). From the shape of these curves we can tell that:

- \(T_A < T_B \)
- \(T_A > T_B \)
- \(T_B = 0 \text{ K} \)
- states above the Fermi energy are more likely to be occupied at \(T_A \) than at \(T_B \).
- the solid is an insulator.

8. A 1.00 g sample of pure KCl from the chemistry stockroom is found to be radioactive and to decay at an absolute rate \(R \) of 1600 counts/s. The decay is traced to the element potassium and in particular to the isotope \(^{40}\text{K}\), which constitutes 1.18% of normal potassium. The molecular weight of KCl is 74.9 g/mole. The disintegration constant \(\lambda \) is

- \(1.12 \times 10^{-17} \text{s}^{-1} \)
- \(1.69 \times 10^{-17} \text{s}^{-1} \)
- \(1.96 \times 10^{-17} \text{s}^{-1} \)
- \(2.30 \times 10^{-17} \text{s}^{-1} \)
- none of these

\[
R = \left| \frac{dN}{dt} \right| = 1600 \quad N = \frac{m}{m_k} \cdot N_A \cdot f
\]

\[
f = 1.18\%
\]

\[
\lambda = \frac{1}{N} \left| \frac{dN}{dt} \right| = \frac{1}{74.9} \times 6.02 \times 10^{23} \times 1.18\% = 9.8 \times 10^{19} \text{ s}^{-1}
\]
9. 50 neutrons with mass m are placed in a one-dimensional square well, of size l. Neglect any interaction between neutrons. At zero temperature, the highest energy neutron will have an energy of: [hint: neutrons are fermions.]

- a) $625(h^2/2ml^2)$
- b) $(h^2/2ml^2)$
- c) $50(h^2/2ml^2)$
- d) $25(h^2/2ml^2)$
- e) $2500(h^2/2ml^2)$

10. Neutrinos
- a) are very high energy photons \times
- b) are thought to exist, but have not yet actually been detected \times
- c) carry little energy \times can carry a lot of energy.
- d) interact weakly with matter \checkmark through weak force
- e) are anti-neutrons \times

11. In a doped semiconductor material of the p-type $\underline{\text{holes dominate}}$

- a) the density of conduction electrons far exceeds the density of holes \times
- b) the holes carry negative charge $\underline{\text{positive}}$ \times
- c) the current is carried mainly by the electrons \times
- d) the current is carried mainly by the holes \checkmark
- e) the valence band is completely full \times no holes in full band.

12. In a hydrogen atom, in the ground state, described by $\psi_1(r) = (\pi r_0^3)^{-1/2} e^{-r_0}$, approximately what is the ratio of the probability $P(r > r_0)$ that the electron will be found beyond the Bohr radius, r_0, to the probability $P(r \leq r_0)$ that it is found inside the distance?

- a) 1.0
- b) 0.5
- c) 2.1
- d) 1.5
- e) 2.5

13. Pions (π^-) have a half-life of 2.2×10^{-8} sec as measured by an observer at rest with respect to them. An observer in a laboratory sees a beam of pions traveling at 0.995c. As the beam passes him he counts 1000 pions per second. How many pions per second will be left after the beam travels 10 m (measured by the observer in the laboratory) further?

- a) 360
- b) 510
- c) 630
- d) 900
- e) 860

\[\text{In Lab frame} \]

\[\lambda = \frac{1}{\sqrt{1 - v^2}} \approx 10 \Rightarrow \lambda_{L} = \lambda_{L0} = 2.2 \times 10^{-7} \text{(sec)} \]

\[\Delta t = \frac{\Delta x}{v} = \frac{10}{0.995 \times 3 \times 10^8} = 3.35 \times 10^{-8} \text{(sec)} \]

\[N(t) = N_0 e^{-\frac{t}{\lambda}} \]
14. In an atom with two electrons on \(n = 3 \) level, one electron on \(p \) orbital and the other is on \(d \) orbital. Which of the following spectroscopy symbols \((n^{2s+1}L_J) \) is NOT a possible state?

a) \(3^1P_1 \)
b) \(3^3D_3 \)
c) \(3^3F_2 \)
d) \(3^3P_1 \)
e) \(3^1S_0 \)
\(L=0 \)

15. Which of the following is not true?

a) The rest mass of a hydrogen atom is less than the sum of the rest masses of an electron and a proton. \(T \Delta m = 13.6 \text{ eV} \)

b) The rest mass of a helium nucleus is less than the sum of the rest masses of two protons and two neutrons. \(T \Delta m = \text{Binding Energy} \)

c) The rest mass of an iron nucleus \((^{56}_{26}\text{Fe}) \) is less than the sum of the rest mass of \(13 \) \(\alpha \) particles and \(4 \) neutrons. \(T \Delta m = \text{Binding Energy} \)

d) The rest mass of a uranium nucleus \((^{235}_{92}\text{U}) \) is less than the sum of the rest masses of \(^{114}_{44}\text{Ru}, ^{128}_{50}\text{Cd} \), and \(3 \) neutrons. \(T \Delta m = \text{Binding Energy} \)

e) The rest mass of a neutron is more than the sum of the rest masses of a proton and an electron. \(n \rightarrow p^+ + e^- + \bar{\nu}_e \)

16. For a semiconductor with a band gap \(E_g = 0.4 \text{ eV} \) and the Fermi level in the middle of the gap, by how many times does the occupancy of a state at the very bottom of the conduction band increase when temperature is raised from 300 to 600 K?

\[
\int (\varepsilon) = \frac{1}{e^{\frac{E_g}{kT}} + 1} \quad \Rightarrow \quad \frac{f(E)}{f(E^b)} = e^{-\beta E_g/2}
\]

\[\begin{align*}
\text{a)} & \quad 47 \\
\text{b)} & \quad 0.000435 \\
\text{c)} & \quad 0.02 \\
\text{d)} & \quad 2 \\
\text{e)} & \quad 15.38
\end{align*}\]

\[
\frac{T_k}{T_e} = \frac{600}{300} = 2 \Rightarrow 4 = e^{-\beta E_g/2} = e^{\frac{0.4}{4 \times 0.026} \times 2} \approx 4.7
\]

17. The ionization energy of hydrogen is 13.6 eV. What would the ionization energy be if the electron were replaced by a muon \((\mu^-) \)? Mass of muon is \(m_\mu \approx 105.658 \text{ MeV/c}^2 \), and mass of electron is \(m_e \approx 0.511 \text{ MeV/c}^2 \)

\[\begin{align*}
\text{a)} & \quad 0.066 \text{ eV} \\
\text{b)} & \quad 13.6 \text{ eV} \\
\text{c)} & \quad 2.82 \text{ keV} \\
\text{d)} & \quad 196 \text{ eV} \\
\text{e)} & \quad 0.94 \text{ eV}
\end{align*}\]

\[\begin{align*}
E_{\mu}^e &= -\frac{m_e^2 c^2}{2n^2} \times \frac{m_\mu c^2}{m_e} \\
E_{\mu}^e &= \frac{m_\mu c^2}{m_e} \times \frac{105.658 \text{ MeV}}{0.511} \times 13.6 = 2.82 \times 10^3 (\text{eV})
\end{align*}\]
18. Which of the following are acceptable descriptions of a state of Hydrogen atom?

I \(n = 2, l = 1, m_l = 1, s = 1, m_s = 0 \) \(\times \)
II \(n = 2, l = 0, m_l = 0, s = 1/2, j = 3/2, m_j = -3/2 \) \(\times \)
III \(n = 2, l = 1, s = 1/2, j = 3/2, m_j = -3/2 \) \(\phi \)
IV \(n = 2, l = 1, m_l = -1, s = 1/2, m_s = -1/2 \) \(\checkmark \)

- a) All
- b) I and III
- c) II and III
- d) III and IV
- e) II and IV

19. Only one of the following reactions or decays can occur. Which one? In case of reactions, sufficient kinetic energy is available in the initial state.

a) \(\pi^- + p \to n + \bar{n} \times \) *Baryon # not conserved*

b) \(p + p \to p + n + \pi^0 \times \) *Charge not conserved*

c) \(p + p \to \pi^+ + \pi^+ \times \) *Baryon # not conserved*

d) \(p + \bar{p} \to \pi^+ + \pi^- \checkmark \) 1+1 \(\to \) 0+0

e) \(e^- \to \pi^- + \nu_e + \bar{\nu}_e \times \) *Electron does decay to \(e^- \).*

20. The energy of the \(n = 2 \) level of hydrogen is 10 eV above the \(n = 1 \) ground state. At 11,600 K \((k_B T = 1 \text{ eV}) \) what fraction of hydrogen atoms are in an \(n = 2 \) state? [Note: think carefully here]

a) \(1 \times e^{-10} \)

b) \(2 \times e^{-10} \)

c) \(3 \times e^{-10} \)

d) \(4 \times e^{-10} \)

\[e^{-8} \Rightarrow \frac{n_2}{n_1} = \frac{\Phi(2)}{\Phi(1)} = \frac{8 \cdot e^{-\beta E_2}}{2 \cdot e^{-\beta E_1}} = 4 \cdot e^{-4 \beta E} \approx 4 \cdot e^{-10} \]

*************** End of multiple-choice problems ***************

\(k_B T = 1 \text{ eV} \Rightarrow \beta = 10 \)
open-ended problems

21. The bond length of N\textsubscript{2} molecules is approximately 0.11 nm. The effective spring constant of the N-N covalent bond is approximately \(k = 2247 \text{ N/m} \). Mass of nitrogen atom is \(m_N = 14 \text{ u} \).

(5 points) (a) Use Maxwell-Boltzmann factors to find the population ratio \(P_1/P_0 \) of the \(\ell = 0 \) and \(\ell = 1 \) states of rotational motion of N\textsubscript{2} molecules at room temperature (300 K). Moment of inertia of diatomic molecules is \(I = \mu R^2 \), where \(\mu \) is the reduced mass and \(R \) is the bond length.

(5 points) (b) Use Maxwell-Boltzmann factors to find the population ratio \(P_1/P_0 \) of the \(n = 0 \) and \(n = 1 \) states of vibrational motion of N\textsubscript{2} at room temperature (300 K).

Sol:

(a) Boltzmann factor: \(P(E) \propto e^{-\beta E} \Rightarrow \frac{P_1}{P_0} = \exp[-\beta(E_1 - E_0)]. \)

\[
E_\ell = \frac{\hbar^2}{2I} \ell(\ell + 1) \Rightarrow E_1 - E_0 = \frac{\hbar^2}{2I} \cdot 2 = \frac{\hbar^2}{I}.
\]

The effective mass of a N\textsubscript{2} molecule is:

\[
\mu = \frac{m_N}{2} = \frac{14 \times 1.66 \times 10^{-27}}{2} = 1.16 \times 10^{-26} \text{ kg},
\]

So the moment of inertia is:

\[
I = \mu R^2 = \frac{m_N R^2}{2} = 1.16 \times 10^{-26} \times (0.11 \times 10^{-9})^2 = 1.4 \times 10^{-46} \text{ (kg}\cdot\text{m}^2).\]

\[
\Rightarrow E_1 - E_0 = \frac{(1.05 \times 10^{-34})^2}{1.4 \times 10^{-46}} = 7.875 \times 10^{-23} \text{ (J)}.
\]

For room temperature (300 K), \(k_B T = 1.38 \times 10^{-23} \cdot 300 = 4.14 \times 10^{-21} \text{ J} \),

\[
\Rightarrow \frac{P_1}{P_0} = \exp\left(\frac{-7.875 \times 10^{-23}}{4.14}\right) = 0.98.
\]

(b) \(E_{\text{vib}} = \hbar \omega \left(n + \frac{1}{2}\right), \) where

\[
\omega = \sqrt{\frac{k}{\mu}} = \sqrt{\frac{2247}{1.16 \times 10^{-26}}} = 4.4 \times 10^{14} \text{ Hz}^{-1}
\]

\[
\Rightarrow \hbar \omega = 4.62 \times 10^{-20} \text{ J}.
\]

\[
\Rightarrow \frac{P_1}{P_0} = \exp[-\beta(E_1 - E_0)] = \exp(-\beta \hbar \omega) = \exp\left(-\frac{46.2}{4.14}\right) = 1.42 \times 10^{-5}.
\]
22. One way to decide whether Maxwell-Boltzmann statistics are valid for an ideal gas is to compare the de Broglie wavelength λ of a typical molecule with the average inter-molecule spacing d. If $\lambda \geq d$ then Maxwell-Boltzmann statistics are not valid.

(3 points) (a) Using RMS speed v_{rms} to show that:

$$\lambda = \frac{h}{\sqrt{3mk_B T}}$$

Here m is the mass of the molecule and T is the gas temperature.

(3 points) (b) Use the fact that $V/N = d^3$ to show that the equality $\lambda = d$ condition can be expressed as:

$$\frac{N}{V} \frac{h^3}{(3mk_B T)^{3/2}} = 1$$

(4 points) (c) Use above results to determine the critical temperature T_c of helium gas when Maxwell-Boltzmann statistics are not valid. Assume the gas density is fixed at the standard condition value (i.e., 22.4 liters for 1 mole of gas).

Sol:

(a) The de Broglie wavelength is $\lambda = \frac{h}{P} = \frac{h}{m v_{\text{rms}}} = \frac{h}{m \sqrt{\frac{3k_B T}{m}}} = \frac{h}{\sqrt{3mk_B T}}$.

(b) $V/N = d^3$ and $\lambda = d$ \Rightarrow $V = \lambda^3 = \frac{h^3}{(3mk_B T)^{3/2}}$.

\Rightarrow $\frac{N}{V} \frac{h^3}{(3mk_B T)^{3/2}} = 1$.

(c) The equation in (b) can be rewritten as:

$$T_c = \left(\frac{N}{V} \right)^{\frac{2}{3}} \frac{h^2}{3mk_B} = \left(\frac{6.02 \times 10^{23}}{22.4 \times 10^{-3}} \right)^{\frac{2}{3}} \frac{(6.63 \times 10^{-34})^2}{3 \times 4 \times 10^{-27} \times 1.38 \times 10^{-23}}$$

$= 8.97 \times 10^{16} \times 43.9569 \times 10^{-68}$

$\Rightarrow T_c = 0.143 \text{K}$
23. Low energy nuclear reaction kinematics, i.e. kinetic energies are typically much lower than the rest energies. Consider the reaction $x + X \rightarrow y + Y$, where X is at rest and x is the projectile with speed v_x. Define energy release Q as: $Q = (M_x + M_X - M_y - M_Y)c^2$. For exothermic ($Q < 0$) reaction, show that the minimum kinetic energy $K_{th} = \frac{1}{2}m_xv_x^2$ needed to initiate the reaction is:

$$K_{th} = -Q \left(\frac{M_x + M_X}{M_X} \right)$$

Sol:

For the center of mass (CM) frame,

$$(M_x + M_X)v_{cm} = M_xv_x \quad \Rightarrow \quad v_{cm} = \frac{M_x}{M_x + M_X}v_x.$$

In the CM frame (the prime frame), velocity of M_x and M_X are:

$$v'_x = v_x - v_{cm} = \frac{M_X}{M_x + M_X}v_x, \quad v'_X = v_{cm} = \frac{M_x}{M_x + M_X}v_x.$$

Energy conservation in the CM frame is:

$$\frac{1}{2}M_xv_x'^2 + \frac{1}{2}M_Xv'_X^2 + (M_x + M_X)c^2 = \frac{1}{2}M_yv_y'^2 + \frac{1}{2}M_Yv'_Y^2 + (M_y + M_Y)c^2$$

For the minimum kinetic energy need to initiate the reaction, v'_Y and v_y must equal to zero in the CM frame, i.e., $v'_Y = v'_y = 0$. Note here we apply the low energy approximation, namely, the energy release Q is much less than rest masses so that $M_x + M_X \approx M_y + M_Y$ is applied in momentum conservation. Thus,

$$\frac{1}{2}M_xv_x'^2 + \frac{1}{2}M_Xv'_X^2 = -Q$$

$$\Rightarrow \frac{1}{2}M_x \left(\frac{M_X}{M_x + M_X}v_x \right)^2 + \frac{1}{2}M_X \left(\frac{M_x}{M_x + M_X}v_x \right)^2 = -Q$$

$$\Rightarrow \frac{1}{2}M_xv_x^2 \cdot M_X \cdot \left[\frac{M_X}{(M_x + M_X)^2} + \frac{M_x}{(M_x + M_X)^2} \right] = -Q$$

$$\Rightarrow \frac{1}{2}M_xv_x^2 \cdot M_X \cdot \left[\frac{M_X + M_x}{(M_x + M_X)^2} \right] = -Q$$

$$\Rightarrow K_{th} = \frac{1}{2}M_xv_x^2 = -Q \cdot \left(\frac{M_x + M_X}{M_X} \right).$$
24. Considering a monoatomic ideal gas in 2 dimension (2D).

(a) Use Boltzmann factor to derive the velocity distribution function \(P(v_x, v_y) \) of the 2D ideal gas with proper normalization, i.e.

\[
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} P(v_x, v_y) dv_x dv_y = 1
\]

[hint: start from 1D velocity distribution.]

(b) Use the result of (a) to derive the speed distribution function \(P(v) \) (where \(v = \sqrt{v_x^2 + v_y^2} \)) of the 2D ideal gas.

Sol:

(a) Using Boltzmann factor, the probability of finding a gas molecule at \(v_x \) for the projection of motion on \(x \)-axis is:

\[P(v_x) \propto e^{-\beta \frac{1}{2} mv_x^2}, \]

where \(\beta = \left(\frac{k_B T}{m} \right)^{-1} \). Normalization requires:

\[\int_{-\infty}^{+\infty} P(v_x) dv_x = 1, \]

\[\Rightarrow \int_{-\infty}^{+\infty} C \cdot e^{-\beta \frac{1}{2} mv_x^2} dv_x = 1. \]

Let \(t = \sqrt{\frac{m \beta}{2}} \),

\[\Rightarrow 2C \cdot \frac{1}{m \beta} \cdot \frac{\sqrt{\pi}}{2} = 1 \Rightarrow C = \sqrt{\frac{m \beta}{2 \pi}}. \]

\[\Rightarrow P(v_x) = \sqrt{\frac{m \beta}{2 \pi}} e^{-\beta \frac{1}{2} mv_x^2}. \]

Similarly, we can derive: \(P(v_y) \) by replacing \(x \) with \(y \):

\[P(v_y) = \sqrt{\frac{m \beta}{2 \pi}} e^{-\beta \frac{1}{2} mv_y^2}, \]

and it satisfies normalization condition \(\int_{-\infty}^{+\infty} P(v_y) dv_y = 1 \). Because \(x \) and \(y \) are orthogonal to each other, i.e., they are independent of each others.

Therefore:

\[P(v_x, v_y) = P(v_x)P(v_y) = \frac{m \beta}{2 \pi} \cdot e^{-\beta \frac{1}{2} (v_x^2 + v_y^2)}. \]

(b) Because \(v = \sqrt{v_x^2 + v_y^2} \), we need to integrate over a circle radius of \(v \) to get the the speed distribution function \(P(v) \):

\[P(v) = \int_v P(v_x, v_y) dv_x dv_y = \int_0^{2\pi} \frac{m \beta}{2 \pi} \cdot e^{-\beta \frac{1}{2} v^2} v d\phi = m \beta \cdot v e^{-\beta \frac{1}{2} v^2}. \]

Normalization:

\[\int_0^{\infty} P(v) dv = \int_0^{\infty} m \beta ve^{-\beta \frac{1}{2} v^2} dv = \int_0^{\infty} e^{-t^2} d(t^2) = 1, \]

where \(t = \sqrt{\frac{m \beta}{2}}. \)