1. **Question 1**

The Coulomb potential between a nucleus of charge Z and an electron is

$$V(r) = -\frac{Ze^2}{r},$$

so

$$E_n(Z) = -\left(\frac{m_e}{2\hbar^2} \left(\frac{Ze^2}{4\pi\epsilon_0} \right)^2 \right) \frac{1}{n^2} = \frac{Z^2 E_n}{Z^2}.$$

Similarly,

$$a(Z) = \frac{4\pi\epsilon_0\hbar^2}{m_eZe^2} = \frac{a}{Z}.$$

The reduced mass of a proton-electron system is

$$\mu = \frac{m_em_p}{m_e + m_p} = \frac{m_e}{1 + m_e/m_p} \approx m_e \left(1 - \frac{m_e}{m_p}\right).$$

Since

$$\frac{m_e}{m_p} \approx \frac{0.511 \text{ MeV}/c^2}{938 \text{ MeV}/c^2} \approx 5.4 \times 10^{-4},$$

the mass of the nucleus has at most a $\sim 5 \times 10^{-4}$ effect on the predicted energies.

2. **Question 2**

 a) $0! \ Y^\ell_\ell$ is already at the highest value of m possible.

 b) Let $L_zY^\ell_\ell = \Theta(\theta)\Phi(\phi)$ so that $L_zY^\ell_\ell = \hbar \ell Y^\ell_\ell$ can be written as

 $$\frac{\hbar}{i} \Theta \frac{\partial \Phi}{\partial \theta} = \hbar \ell \Theta \Phi.$$

 Dividing out by $\hbar \Theta / i$ gives

 $$\frac{\partial \Phi}{\partial \phi} = i\ell \Phi,$$

 which is solved by $\Phi(\phi) = e^{i\ell \phi}$, where we absorbing the normalization constant into the function $\Theta(\theta)$. Similarly, the expression $L_+Y^\ell_\ell = 0$ can be written as the following differential equation:

 $$\hbar e^{i\phi} \left(\Phi \frac{\partial \Theta}{\partial \theta} + i\Theta \cot \theta \frac{\partial \Phi}{\partial \phi} \right) = 0.$$
Plugging in our solution for Φ gives

$$\hbar e^{i\phi} \Phi \left(\frac{\partial \Theta}{\partial \theta} - \ell \Theta \cot \theta \right) = 0,$$

which only holds generally for Φ when

$$\frac{d\Theta}{d\theta} = \ell \cot \Theta,$$

which we can re-write as

$$\frac{d\Theta}{\Theta} = \ell \cot d\theta.$$

Integrating both sides gives

$$\int \frac{d\Theta}{\Theta} = \int \ell \cot d\theta$$

so that

$$\ln \Theta = \ell \ln \sin \theta + C,$$

and hence

$$\Theta = A \sin^\ell \theta.$$

This means that

$$Y_\ell^\ell(\theta, \phi) = A \left(\sin \theta e^{i\phi} \right)^\ell,$$

where A is the normalization constant.

c) The normalization condition is

$$A^2 \int_0^\pi \int_0^{2\pi} \sin^{2\ell} \theta \sin \theta d\theta d\phi = 1.$$

Integrating out ϕ gives

$$2\pi A^2 \int_0^\pi \sin^{2\ell+1} \theta d\theta = 1.$$

We computed this integral before on question 2c of HW7:

$$\int_0^\pi (\sin \theta)^{2\ell+1} d\theta = 2 \frac{(2\ell)!}{(2\ell + 1)!},$$

so

$$Y_\ell^\ell(\theta, \phi) = \frac{1}{\ell!} \sqrt{\frac{(2\ell + 1)!}{4\pi}} \left(\frac{1}{2} e^{i\phi} \sin \theta \right)^\ell,$$

which is exactly what we had on question 2b of HW7 up to an arbitrary normalization of $(-1)^\ell$.

d) Applying the raising operator to Y_1^2 gives

$$\hbar e^{i\phi} \left(\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right) \left(-\frac{1}{2} \sqrt{\frac{15}{2\pi}} \sin \theta \cos \theta e^{i\phi} \right) = 2\hbar Y_2^2.$$
where we have used the fact that the normalization term $\hbar\sqrt{\ell(\ell+1) - m(m+1)} = 2\hbar$. Simplifying this expression gives

$$Y_2^2(\theta, \phi) = -\sqrt{\frac{15}{32\pi}} e^{i\phi} \left(e^{i\phi}(\cos^2\theta - \sin^2\theta) - e^{i\phi}\cos^2\theta \right)$$

$$= \sqrt{\frac{15}{32\pi}} \sin^2\theta e^{2i\phi}.$$

3. **Question 3**

a) The kinetic energy of the two particles is $2\cdot \frac{1}{2}mv^2$, and the total angular momentum $|L| = 2\cdot \frac{1}{2}mv$. In terms of the angular momentum, the energy of the system is

$$H = \frac{L^2}{ma^2}.$$

The eigenvalues of L^2 are $\hbar^2\ell(\ell+1)$, and since ma^2 is a constant, we have the eigenvalues of H are the energies

$$E_n = n(n+1)\frac{\hbar^2}{ma^2}$$

for $n = 0, 1, 2, \ldots$, where we have labeled the quantum numbers n instead of ℓ.

b) The normalized eigenvalues of the wavefunction are simply $\psi_{nm}(\theta, \phi) = Y_n^m(\theta, \phi)$, that is the spherical harmonics. The degeneracy is therefore $d(n) = 2n + 1$.

4. **Question 4**

a) The 3D harmonic oscillator in Cartesian coordinates gives the time independent Schrödinger equation:

$$-\frac{\hbar^2}{2m} \left[\frac{\partial^2 X}{\partial x^2} YZ + X \frac{\partial^2 Y}{\partial y^2} Z + XY \frac{\partial^2 Z}{\partial z^2} \right] + \frac{1}{2}m\omega^2 XYZ \left[x^2 + y^2 + z^2 \right] = E \cdot XYZ$$

where we have substituted

$$\psi(x, y, z) = X(x)Y(y)Z(z).$$

Dividing out by XYZ gives

$$\left\{ -\frac{\hbar^2}{2m} \frac{1}{X} \frac{\partial^2 X}{\partial x^2} + \frac{1}{2}m\omega^2 x^2 \right\} + \left\{ -\frac{\hbar^2}{2m} \frac{1}{Y} \frac{\partial^2 Y}{\partial y^2} + \frac{1}{2}m\omega^2 y^2 \right\} + \left\{ -\frac{\hbar^2}{2m} \frac{1}{Z} \frac{\partial^2 Z}{\partial z^2} + \frac{1}{2}m\omega^2 z^2 \right\} = E,$$

where the first term depends only on x, the second only on y, and the third only on z. So they differ with respect to each other only by the constants E_x, E_y, and E_z, such that
\[E_x + E_y + E_z = E. \] The energy for the 1D harmonic oscillator is \(E_n = \left(\frac{1}{2} + n \right) \hbar \omega, \) so by analogy,

\[E = \hbar \omega \left[\left(\frac{1}{2} + n_x \right) + \left(\frac{1}{2} + n_y \right) + \left(\frac{1}{2} + n_z \right) \right] = \left(n + \frac{3}{2} \right) \hbar \omega, \]

where \(n = n_x + n_y + n_z, \) and \(n = 0, 1, 2, \ldots \)

(b) The degeneracy is determined by how many ways three non-negative integers can sum to \(n. \) Two non-negative integers can sum up to \(n + 1 \) ways: 0 + \(n, \) 1 + (\(n - 1 \)), 2 + (\(n - 2 \)), \ldots, (\(n - 1 \)) + 1, \(n + 0. \) So the number of ways that two numbers can sum up to \(n - n_x \) is \(n - n_x + 1. \) If \(n_x = n, \) then there is 1 way, if \(n_x = n - 1 \) there are 2 ways, if \(n_x = n - 2 \) there are 3 ways, etc. if \(n_x = 0, \) there are \(n + 1 \) ways. So there are a total of \(1+2+3+\cdots+n+1 \) ways to make three non-negative integers sum up to \(n. \) Therefore

\[d(n) = \frac{(n + 1)(n + 2)}{2}. \]

5. Question 5

Plugging into the given equation for the classical radius, we get

\[r_c = \frac{(1.6 \times 10^{-19})^2}{4\pi(8.85 \times 10^{-12})(9.11 \times 10^{-31})(3.0 \times 10^8)^2} = 2.81 \times 10^{-15} \text{ m}. \]

We also know that

\[L = \frac{1}{2} \hbar = I \omega = \left(\frac{2}{5} mr^2 \right) \left(\frac{v}{r} \right) = \frac{2}{5} mrv, \]

where we have used the moment of inertia for a solid sphere. Thus,

\[v = \frac{5\hbar}{4mr} = \frac{(5)(1.055 \times 10^{-34})}{(4)(9.11 \times 10^{-31})(2.81 \times 10^{-15})} = 5.2 \times 10^{10} \text{ m/s}. \]

Since the speed of light is only \(3 \times 10^8 \text{ m/s}, \) the point on the “equator” would be traveling more than 100 times faster than light, so this model does not make sense.