(1) The needle on a broken speedometer is free to swing so that if you give it a flick it is equally likely to come to rest at any angle between 0 and π.

(a) What is the probability density, $\rho(\theta)$, such that $\rho(\theta)d\theta$ is the probability that the needle will come to rest between θ and $(\theta + d\theta)$? Make sure that the total probability is 1.

(b) Compute $\langle \theta \rangle$, $\langle \theta^2 \rangle$, and σ for the probability distribution.

(c) Compute $\langle \sin \theta \rangle$, $\langle \cos \theta \rangle$, and $\langle \cos^2 \theta \rangle$.

(2) Consider the same problem as the previous, but now we are interested in the x-coordinate of the needle’s point, where the needle has length r.

(a) What is the probability density, $\rho(x)$, such that the $\rho(x)dx$ is the probability that the needle point will have an x coordinate between x and $x + dx$? Remember that you know the probability that the needle is in the range from θ to $\theta + d\theta$, so the question is what interval dx corresponds to $d\theta$.

(b) Compute $\langle x \rangle$, $\langle x^2 \rangle$, and σ for the probability distribution.

(3) Show that

$$\frac{d}{dt} \int_{-\infty}^{\infty} |\Psi(x,t)|^2 dx = 0.$$

This demonstrates that once the wavefunction is normalized, it stays normalized, regardless of how it evolves with time. Hint: follow the approach of the in-class derivation of $\langle p \rangle = m\langle x \rangle/dt$.

(4) Suppose the following wave function is a solution to the Schrödinger equation:

$$\Psi(x,t) = Ae^{-\lambda|x|}e^{-i\omega t},$$

where A, λ, and ω are positive real constants.

(a) Find the value of A.

(b) Determine the expectation values of x, x^2, and σ.

(c) What is the probability that the particle will be found between $x = [-\sigma, \sigma]$?

(5) Consider the wave function of a particle with mass m

$$\Psi(x,t) = Ae^{-a[(mx^2/\hbar)+it]},$$

where A and a are positive real constants.

(a) Find A. Hint: $\int_{-\infty}^{\infty} e^{-a(x+b)^2} dx = \sqrt{\frac{\pi}{a}}$.
(b) For what potential energy function $V(x)$ does Ψ satisfy the Schrödinger equation?
(c) Calculate the expectation values of x, x^2, p, and p^2.
(d) Find σ_x and σ_p. Does this satisfy the uncertainty principle?

(6) Suppose that a solution to the Schrödinger equation gives rise to three wavefunctions with the given domains:

\[\Psi_1(x) = A e^{kx} \quad (\infty \leq x < 0) \]
\[\Psi_2(x) = Bx^2 + Cx + D \quad (0 \leq x < L) \]
\[\Psi_3(x) = 0 \quad (x \geq L). \]

(a) What values must B, C, and D take in terms of A in order for these solutions to satisfy the continuity conditions, namely that Ψ and $d\Psi/dx$ are continuous? Note that the solution $\Psi_3(x) = 0$ requires an infinitely discontinuous potential at $x = L$, so the continuity condition for $d\Psi/dx$ does not apply at $x = L$.
(b) Derive an expression that A, B, C, D, k, and L must satisfy in order for the wavefunction to be normalized properly.