Warm-up problems to be done BEFORE recitation #7
Physics 272, Spring 2018 (from HRW 10th ed Chapter 27)

Single loop circuit

15 ILW The current in a single-loop circuit with one resistance \(R \) is 5.0 A. When an additional resistance of 2.0 \(\Omega \) is inserted in series with \(R \), the current drops to 4.0 A. What is \(R \)?

Single loop circuit with real batteries

17 SSM In Fig. 27-33, battery 1 has emf \(\varepsilon_1 = 12.0 \text{ V} \) and internal resistance \(r_1 = 0.016 \) \(\Omega \) and battery 2 has emf \(\varepsilon_2 = 12.0 \text{ V} \) and internal resistance \(r_2 = 0.012 \) \(\Omega \). The batteries are connected in series with an external resistance \(R \). (a) What \(R \) value makes the terminal-to-terminal potential difference of one of the batteries zero? (b) Which battery is that?

Multiloop circuit

23 In Fig. 27-35, \(R_1 = 100 \) \(\Omega \), \(R_2 = 50 \) \(\Omega \), and the ideal batteries have emfs \(\varepsilon_1 = 6.0 \text{ V} \), \(\varepsilon_2 = 5.0 \text{ V} \), and \(\varepsilon_3 = 4.0 \text{ V} \). Find (a) the current in resistor 1, (b) the current in resistor 2, and (c) the potential difference between points \(a \) and \(b \).

Power dissipation in multiloop circuit

39 In Fig. 27-50, two batteries of emf \(\varepsilon = 12.0 \text{ V} \) and internal resistance \(r = 0.300 \) \(\Omega \) are connected in parallel across a resistance \(R \). (a) For what value of \(R \) is the dissipation rate in the resistor a maximum? (b) What is that maximum?