TODAY:
Can crusher followup
Inductors in circuits
Simple circuits that depend on time
• RC review
• RL
• LC
BEFORE CLASS:
COME AND PLAY WITH DEMOS

EXAM #2 IS WED APRIL 11 IN CLASS

class web site
http://www.physics.rutgers.edu/ugrad/272
pop quiz info

Out of 23 papers

9 (check plus) were fine

7 (check): did not show how to get B
OR wrong sign for cross product in computing force

7: (check minus or minus) showed serious confusion
EXAMPLE: UNIFORM B FIELD with changing magnitude inside solenoid

INDUCED E FIELD

IF THERE IS A WIRE LOOP on the curve C, current will flow
MAGNETIC FORCE ON THE WIRE LOOP
CURRENT PULSE: I, B increase from zero
CAN CRUSHER DEMO
CAN CRUSHER DEMO
CURRENT PULSE: I, B increase from zero (RLC with switch closed at t=0)

Magnetic force on loop is INWARD
CURRENT FLOW IS THE SAME AS IF THERE WERE AN EMF SOURCE INSERTED INTO THE LOOP
Simple time-varying circuits

Let’s first review RC circuits from last time
Switch closed to “a” position at t=0
Initial q = 0

\[\mathcal{E} - iR - \frac{q}{C} = 0. \]

\[i = \frac{dq}{dt}. \]

\[R \frac{dq}{dt} + \frac{q}{C} = \mathcal{E} \]

\[q = C \mathcal{E} (1 - e^{-t/RC}) \]

\[i = \frac{dq}{dt} = \left(\frac{\mathcal{E}}{R} \right) e^{-t/RC} \]

Fig. 27-15 When switch S is closed on a, the capacitor is *charged* through the resistor. When the switch is afterward closed on b, the capacitor *discharges* through the resistor.

A capacitor that is being charged initially acts like ordinary connecting wire relative to the charging current. A long time later, it acts like a broken wire.
RC circuits

When switch S is closed on a, the capacitor is charged through the resistor. When the switch is afterward closed on b, the capacitor discharges through the resistor.

The time it takes for the current to decrease by a factor of e is the "time constant".

$$\tau = RC$$

$$i = \frac{dq}{dt} = \left(\frac{\mathcal{E}}{R}\right)e^{-t/RC}$$

$RC \ln 2 =$ the time it takes for the current to decrease by a factor of 2
Discharge the capacitor

\[R \frac{dq}{dt} + \frac{q}{C} = 0 \]

\[q = q_0 e^{-\frac{t}{RC}} \]

\[i = \frac{dq}{dt} = -\left(\frac{q_0}{RC} \right) e^{-\frac{t}{RC}} \]

\[\tau = RC \]

the time it takes for the current to decrease by a factor of e “time constant”

RC ln 2 = the time it takes for the current to decrease by a factor of 2
Discharge the capacitor

\[R \frac{dq}{dt} + \frac{q}{C} = 0 \]

\[q = q_0 e^{-\frac{t}{RC}} \]

\[i = \frac{dq}{dt} = -\left(\frac{q_0}{RC} \right) e^{-\frac{t}{RC}} \]

the time it takes for the current to decrease by a factor of e

“time constant”

RC ln 2 = the time it takes for the current to decrease by a factor of 2

What happened to the energy stored in the capacitor?
i^2R in the resistor – dissipated as heat
A new circuit element: the inductor

L
Wire coil with resistance $R=0$ and current i

Current i in loop produces a magnetic flux through loop $\Phi = L \, i$

L is called the self-inductance of the loop

Units: $1 \, T \, m^2 / A = 1 \, H$ (1 henry)

If the current changes, the magnetic flux will change $\Phi(t) = L \, i(t)$

Effect is to create electric fields in the loop

These fields induce current that opposes the change in current

Like inserting a battery with $\mathcal{E} = |d\Phi(t)/dt| = L \, di/dt$
A new circuit element: the inductor

You can still apply the loop rule If as you go through the inductor in the direction of the current arrow, you count a voltage difference \(= -L \frac{di(t)}{dt} \)

Note that if \(i \) does not vary with time, there is NO voltage difference
30.9: RL Circuits:

Switch closed to “a” position at $t=0$

$$-iR - L \frac{di}{dt} + \mathcal{E} = 0$$

$$i = \frac{\mathcal{E}}{R} \left(1 - e^{-Rt/L}\right),$$

$\tau_L = \frac{L}{R}$ (time constant).

Initially, an inductor acts to oppose changes in the current through it. A long time later, it acts like ordinary connecting wire.
At time $t = (L/R)\ln 2$, what is the voltage across the inductor?

(a) $\frac{E}{2}$

(b) $E \ln 2$

(d) $\frac{E}{(\ln 2)}$

(e) I have no idea

Fig. 30-15 An RL circuit. When switch S is closed on a, the current rises and approaches a limiting value $\frac{E}{R}$.
At time $t = (L/R) \ln 2$, what is the voltage across the inductor?

(a) $E/2$
(b) $E \ln 2$
(d) $E/(\ln 2)$
(e) I have no idea

Fig. 30-15 An RL circuit. When switch S is closed on a, the current rises and approaches a limiting value E/R.
LC circuits

\[\frac{Q(t)}{C} - L \frac{di(t)}{dt} = 0 \]
\[i(t) = -\frac{dQ(t)}{dt} \]
\[\frac{Q(t)}{C} + L \frac{d^2Q(t)}{dt^2} = 0 \]

\[Q(t=0) = q_0 \]
\[i(t=0) = 0 \]

\[Q(t) = q_0 \cos \omega t \]

where \(\omega = \frac{1}{(LC)^{1/2}} \)
LC circuits

\[Q(t) = q_0 \cos \omega t \]

where \(\omega = \frac{1}{(LC)^{1/2}} \)

\[i(t) = \omega q_0 \sin \omega t \]
30.10: Energy Stored in a Magnetic Field:

To increase the current from zero, the battery has to do work against the emf induced by the change in the current.

\[\mathcal{E} = L \frac{di}{dt} + iR, \]

\[\frac{dU_B}{dt} = Li \frac{di}{dt}. \]

\[\mathcal{E}i = Li \frac{di}{dt} + i^2R, \]

\[\int_0^U_B dU_B = \int_0^i Li \, di \]

\[U_B = \frac{1}{2} Li^2 \quad \text{(magnetic energy)}, \]
LC circuits

\[Q(t) = q_0 \cos \omega t \]
where \(\omega = 1/(LC)^{1/2} \)

\[i(t) = \omega q_0 \sin \omega t \]

Energy \(Q^2/(2C) + Li^2/2 \) is conserved
Alternates between all in the capacitor and all in the inductor