Beads have normal force N from ring.
By 3rd law the ring has an equal and opposite force

\[mg \cos \theta - N = \frac{mv^2}{R} \]

\[T - 2N \cos \theta - Mg = 0 \]

What is V of bead?
Use energy.
\[K_i = 0 \quad U_i = mgR \]
\[K_f = \frac{1}{2}mv^2 \quad U_f = mgR \cos \theta \]

\[\frac{1}{2}mv^2 + mgR \cos \theta = mgR \]

\[\frac{V^2}{R} = 2g(1 - \cos \theta) \]
\[mg \cos \theta - N = 2mg (1 - \cos \theta) \]

\[N = 3mg \cos \theta - 2mg = mg (3\cos \theta - 2) \]

as \(T \to 0 \): \(2N \cos \theta \max = -Mg \)

\[2mg (3\cos \theta \max - 2) \cos \theta \max = -Mg \]

\[6m \cos^2 \theta_m - 4m \cos \theta_m + M = 0 \]

\[\cos^2 \theta_m - \frac{2}{3} \cos \theta + \frac{M}{6m} = 0 \]

\[\cos \theta_m = \frac{1}{3} \pm \sqrt{\frac{1}{9} - \frac{M}{6m}} / 2 \]

\[= \frac{1}{3} \pm \sqrt{\frac{1}{9} - \frac{M}{6m}} \]

\[= \cos \theta_m \]

\[\Rightarrow \text{when } m = \frac{3M}{2} \Rightarrow \cos \theta_m = \frac{1}{3} \text{ (term in } \sqrt{ } \text{ disappears)} \]

\[\Rightarrow \text{if } m < \frac{3M}{2} \text{ then no solution for } \cos \theta_m \]

the ring will never rise.

\[\Rightarrow \text{if } m \gg \frac{3M}{2} \text{ then one solution is } \cos \theta_m = \frac{2}{3} \]

it can never get bigger than that.

Note: If you assume opposite direction for \(N \), solution for \(N \) will have - sign. Everything will work out the same.
As discussed in recitation, there are two sources of
\(F \) on the scale

1. weight of chain already fallen \((2xg) \)

2. momentum flow chain hitting the scale now.

\[dp = vdm = vL \, dx \]

\[\frac{dp}{dt} = 2v^2 \]

\[F_{\text{total on scale}} = 2v^2 + 2xg \]

But what is \(v \)? speed of top link of chain after it has fallen distance \(x = \) speed of chain link hitting scale

\[v = \sqrt{2gx} \]

\[F_{\text{total}} = 32gx \]
So \(F_{\text{Total}} = 3 \lambda g x \) until last link falls.

\[
F = \frac{3Mg x}{L}
\]

\(F_{\text{max}} = 3Mg \)

\(F_{\text{after}} = Mg \)

last link.

time of last link falling.
\[
\rho = \sqrt{a^2 + x^2}
\]

\[
U = \frac{-2GM_m}{\rho} = \frac{-2GM_m}{\sqrt{a^2 + x^2}}
\]

\[
K = \frac{1}{2} m v^2
\]

at \(x = 3a \):

\[
E = \frac{1}{2} m v_i^2 - \frac{2GM_m}{\sqrt{a^2 + 9a^2}} = \frac{1}{2} m v_i^2 - \frac{2}{\sqrt{10}} \frac{GM_m}{a}
\]

at \(x = 0 \):

\[
\frac{1}{2} m v_f^2 - \frac{2GM_m}{a}
\]
Solve for U_f

\[\frac{1}{2} m U_f^2 = \frac{1}{2} m U_i^2 - \frac{2}{\sqrt{10}} \frac{GM}{a} + \frac{2GM}{a} \]

\[U_f^2 = U_i^2 - \frac{4}{\sqrt{10}} \frac{GM}{a} + \frac{4GM}{a} \]

\[U_f = \sqrt{U_i^2 + \left(4 - \frac{4}{\sqrt{10}}\right) \frac{GM}{a}} \]
\[F = \frac{dp}{dt} = v \frac{dm}{dt} = v \frac{dm}{dt} \]

\(a) \)
Power:
\[= \vec{F} \cdot \vec{v} = Fv = v^2 \frac{dm}{dt} \]

\(b) \)
\[\text{dK of mass } dm \quad \frac{dm}{dt} \rightarrow v \]
\[\text{dK} = \frac{1}{2} (\text{dm}) v^2 \]

\[\frac{\text{dK}}{\text{dt}} = \frac{1}{2} \left(\frac{\text{dm}}{\text{dt}} \right) v^2 \]

which is half the power calculated in \(a) \).

the other half is going to dissipative force (ie friction) to get the sand moving at \(v \).
\[\frac{dp}{dt} = F - mg \]

But, \[\frac{dp}{dt} = v_0 \frac{dm}{dt} = v_0 \frac{(2dy)}{dt} = v_0 \frac{dy}{dt} = 2v_0^2 \]

\[\frac{dp}{dt} = 2v_0^2 = F - mg = F - \lambda y g \]

\[F = \lambda (v_0^2 + yg) \]
1) Power to nope:

\[P_{\text{mech}} = F \cdot \vec{v} = F v_o = \lambda \left(v_o^2 + yg v_o \right) \]

\[K = \frac{1}{2} m v_o^2 = \frac{1}{2} (\lambda y) v_o^2 \]

\[U = \Theta \ m g h \quad \text{where} \ h = \frac{y}{2} \]

\[U = m g \frac{y}{2} = \frac{1}{2} \lambda g y^2 \]

\[E = \frac{1}{2} \lambda y v_o^2 + \frac{1}{2} \lambda g y^2 \]

Rate of change of \(E \):

\[\frac{dE}{dt} = \frac{1}{2} \lambda v_o^2 \frac{dy}{dt} + \frac{1}{2} \lambda g y \frac{dy}{dt} \]

\[\frac{dE}{dt} = \frac{1}{2} \lambda v_o^3 + \lambda g y v_o \]

\[\frac{dE}{dt} = \lambda \left(\frac{v_o^3}{2} + yg v_o \right) \]

\(\lambda \) is smaller than Power

Energy is dissipated in getting rope moving.
6.1 Recall 5.13

$$U = -\frac{2GMm}{\sqrt{a^2 + x^2}}$$

Expand around $x = 0$

1^{st} deriv.
$$\frac{dU}{dx} = \frac{2GMm}{(a^2 + x^2)^{3/2}} x$$

2^{nd} deriv.
$$\frac{d^2U}{dx^2} = \frac{2GMm}{(a^2 + x^2)^{3/2}} - \frac{6GMm}{(a^2 + x^2)^{5/2}} x^2$$

Taylor:
$$U(x) \approx U(0) + \frac{dU}{dx}\bigg|_{x=0} x + \frac{1}{2} \frac{d^2U}{dx^2}\bigg|_{x=0} x^2 + \cdots$$

$$U(x) = -\frac{2GMm}{\alpha} + O.x + \frac{1}{2} \left(\frac{2GMm}{(a^2 + X^2)^{3/2}}\right) x^2$$

Put it together:
$$U(x) \approx \{\text{const}\} + \frac{1}{2}\left[\frac{2GMm}{\alpha^3}\right] x^2 + \cdots$$
We can ignore the constant (and higher terms)

We compare to \(\Sigma + 0 \); \(U = \frac{1}{2} k \cdot x^2 \)

in this case: \(R = \frac{2GMm}{\alpha^3} \)

\[
\text{So } \omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{2GM}{\alpha^3}}
\]
6.3 Here’s the plan:

1. Write Newton’s 2nd law for each mass.
2. Use the symmetry of the problem to reduce 4 equations to 2.
3. Look for solutions in which all masses oscillate at the same frequency.
4. Solve the resulting equations.

\[\begin{align*}
\ddot{x}_1 &= k(x_2 - x_1) \\
\ddot{x}_2 &= k(x_3 - x_2) - k(x_2 - x_1) \\
\ddot{x}_3 &= k(x_4 - x_3) - k(x_3 - x_2) \\
\ddot{x}_4 &= -k(x_4 - x_3)
\end{align*} \]

Only forces are the spring forces.

If we look for a solution with \(x_4 = x_1 \) and \(x_3 = x_2 \), the third and fourth equations will be automatically satisfied. When the first and second equations are satisfied (for example, if you replace \(x_1 \) by \(x_4 \) and \(x_2 \) by \(x_3 \) in the first equation, you get the 4th equation).

To get the solutions with \(x_4 = x_1 \) and \(x_3 = x_2 \), we need only to solve 2 equations for \(x_1 \) and \(x_2 \):

\[\begin{align*}
\ddot{x}_1 &= k(x_2 - x_1) \\
\ddot{x}_2 &= k(x_2 - x_1)
\end{align*} \]
Write \(X_1(t) = c_1 \sin(wt + \phi) \) and \(X_2(t) = c_2 \sin(wt + \phi) \).

and substitute (cancel out the \(\sin(wt + \phi) \) factors)

\[-m\omega_1^2 c_1 = k(c_2 - c_1),\]

\[-m\omega_2^2 c_2 = k(c_1 - c_2).\]

so \(\omega_1^2(c_1 + c_2) = 0 \) (add the 2 equations)

either \(\omega^2 = 0 \) (all masses move together with same speed and relaxed springs)

or \(c_1 = -c_2 \) and \(\omega^2 = \frac{2k}{m} \)

(notice that the equations at the bottom of the previous page are the same as for the system discussed in class)

\[\rightarrow \text{Omm} \leftarrow \text{Omm} \leftarrow \text{snapshot of mode}\]

(notice we have 2 systems of two masses each oscillating out of phase so the spring in between is always relaxed)

REPEAT for other two solutions, as follows

Look for solutions with \(X_4 = -X_1 \) and \(X_3 = -X_2 \).

(Again, the 3rd & 4th equations will be satisfied if the 1st & 2nd are)

Solve these following two equations

\[mX''_1 = k(X_2 - X_1),\]

\[mX''_2 = k(X_1 - 3X_2).\]
Write $x_1(t) = c_1 \sin(wt + \theta)$ and $x_2(t) = c_2 \sin(wt + \phi)$.

and substitute

$\begin{align*}
-mw^2 c_1 &= k(c_2 - c_1) \\
-mw^2 c_2 &= k(c_1 - 3c_2)
\end{align*}$

$\Rightarrow c_1 = \frac{kc_2}{k-mw^2}$

$\Rightarrow -mw^2 c_2 = \frac{k^2 c_2}{k-mw^2} - 3k(k-mw^2)c_2$

if $c_2 = 0$, then $c_1 = 0$ — not a useful solution

then cancel our c_2

$-mw^2 = -2k^2 + 3kmw^2$

quadratic equation for $\beta = mw^2$

$\beta^2 - 4k\beta + 2k^2 = 0$

$mw^2 = \frac{4k \pm \sqrt{16k^2 - 4k^2}}{2}$

$w^2 = \left(2 \pm \frac{2}{m}\right)$

look at the displacement patterns:

$\begin{align*}
take c_2 &= 1, \quad c_1 &= \frac{k}{k-\left(2 \pm \frac{2}{m}\right)k} \\
&= \frac{1}{1 \pm \frac{2}{m}} = 1 \mp \frac{2}{m}
\end{align*}$

$W^2 = \left(2 \pm \frac{2}{m}\right)$

$W^2 = \left(2 - \frac{2}{m}\right)$
PS to 6.3 - Normal modes with linear algebra

Start with the 4 Newton's law equations

\[
\begin{align*}
mx_1' &= k(x_2 - x_1) \\
mx_2' &= k(x_1 - 2x_2 + x_3) \\
mx_3' &= k(x_2 - 2x_3 + x_4) \\
mx_4' &= -k(x_4 - x_3)
\end{align*}
\]

Look for solution \(x_i(t) = C_i \sin(wt + \phi) \)

The 4 equations for the \(4 \) \(C_i \) can be arranged as follows:

\[
\begin{align*}
\left(\frac{k}{m} \right) (+a_1 - a_2) &= w^2 a_1 \\
\left(\frac{k}{m} \right) (-a_1 + 2a_2 - a_3) &= w^2 a_2 \\
\left(\frac{k}{m} \right) (-a_2 + 2a_3 - a_4) &= w^2 a_3 \\
\left(\frac{k}{m} \right) (-a_3 + a_4) &= w^2 a_4
\end{align*}
\]

This is an eigensystem for a 4x4 matrix

\[
\begin{pmatrix}
\frac{k}{m} & 1 & -1 & 0 \\
-1 & +2 & -1 & 0 \\
0 & -1 & +2 & -1 \\
0 & 0 & -1 & +1
\end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = w^2 \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}
\]

The 4 eigenvalues / eigenvectors of this matrix give you the 4 solutions.

Use symmetry (look for eigenvectors of form \(\begin{pmatrix} a \\ b \\ b \\ -a \end{pmatrix} \)) to get the explicit frequencies and displacement patterns.
\[Q = 0 \]

\[V = V' \]

\[\text{elastic collision} \]

\[mV_0 + 0 = MV - mV' \]

\[V_0 = \frac{M}{m} \overline{V} - V' \]

Energy cons.

\[\frac{1}{2} MV^2 + \frac{1}{2} mV'{}^2 = \frac{1}{2} mV_0^2 \]

\[V_0^2 = \frac{M}{m} \overline{V}^2 + V'{}^2 \]

We need to eliminate \(\overline{V} \) since we do not know it (or care about it)

\[V_0^2 - \frac{4}{9} V_0^2 = \frac{M}{m} V^2 \]

\[V^2 = \frac{5m}{9M} V_0^2 \]

From Pcons: \[V = \frac{5}{3} \frac{m}{M} V_0 \]
\[
\left(\frac{5}{3}\right)^2 \left(\frac{m}{M}\right)^2 \gamma_0^2 = \frac{5}{9} \frac{M}{m} \gamma_0^2
\]

\[
\frac{25}{9} \frac{m}{M} = \frac{5}{9}
\]

\[
M = 5m
\]
Prove in \(x \) & \(y \) separately:

\[x: \; MV' \cos \theta = mV_0 - MV \]
\[y: \; MV' \sin \theta - \frac{mV_0}{2} = 0 \]

Even more:

\[
\frac{1}{2} mV_0^2 + \frac{1}{2} MV^2 = \frac{1}{2} m \left(\frac{V_0}{2} \right)^2 + \frac{1}{2} MV^1^2
\]

we can eliminate \(V, V' \) & \(V_0 \)

\[\cos \theta = \sin \theta = \frac{1}{\sqrt{2}} \]

\[P_x \cos: \quad \frac{MV'}{\sqrt{2}} = mV_0 - MV \]

\[P_y \cos: \quad \frac{MV'}{\sqrt{2}} - \frac{mV_0}{2} = 0 \quad \Rightarrow \quad V' = \frac{1}{\sqrt{2}} \frac{m}{M} V_0 \]
\[\frac{\sqrt{E}}{\sqrt{M}} \left(\frac{1}{\sqrt{2}} \frac{m}{M} \sqrt{v_0} \right) = m v_0 - M V \]

\[+ \frac{1}{2} m v_0^2 = M V \]

\[V = \frac{1}{2} \frac{m}{M} v_0 \]

Euler:

\[\frac{1}{2} m \dot{v}_0^2 - \frac{1}{8} m \sqrt{v_0}^2 + \frac{1}{2} \frac{m}{M} \left(\frac{1}{2} \frac{m}{M} \sqrt{v_0} \right)^2 = \frac{1}{2} \frac{m}{M} \left(\frac{m}{M} \right)^2 \]

\[= 0 \]

\[\frac{1}{2} m \dot{v}_0^2 - \frac{1}{8} m \sqrt{v_0}^2 + \frac{1}{8} \frac{m^2}{M} \sqrt{v_0}^2 - \frac{1}{4} \frac{m^2}{M} \sqrt{v_0}^2 = 0 \]

\[\frac{3}{8} \sqrt{v_0}^2 - \frac{1}{8} \frac{m}{M} \sqrt{v_0}^2 = 0 \]

\[\frac{m}{M} = 3 \]
Translate to frame where wall is at rest (wall frame)

If wall at rest ($V = 0$)

$\Delta P = 2mV$

Time between collisions:

$v \Delta T = 2l \quad \text{distance by wall}$

$\Delta T = \frac{2l}{V}$

$F = \frac{\Delta P}{\Delta T} = \frac{2mV}{\frac{2l}{V}} = \sqrt{\frac{mV^2}{l}}$ \quad \text{time averaged force}
1) moving wall \((V \neq 0)\)

in wall frame: elastic bounce back to lab frame

\[V' = (V+V) + V = V + 2V \]

change in \(V\)

\[\Delta V = V' - V = 2V \]

time between collisions

\[\Delta T = 2x \]

\[\Delta T = \frac{2x}{V} \]

\[\frac{\Delta V}{\Delta T} \Rightarrow \frac{dV}{dt} = \frac{2V}{2x/V} = \frac{VV}{x} \]

\[\frac{dV}{dt} = \frac{dV}{dx} \frac{dx}{dt} \text{ (chain rule)} \]

\[\frac{dV}{dx} = \frac{dV}{dt} \frac{1}{dx/dt} = -\frac{1}{V} \frac{dV}{dt} \]

\[-V \text{ (since } x \text{ is wall separation, decreasing with } t) \]

\[\frac{dV}{dx} = -\frac{1}{V} \left(\frac{VV}{x} \right) = -\frac{V}{x} \]
c) \(\frac{dv}{v} = -\frac{dx}{x} \)

\[\ln \left(\frac{v}{v_0} \right) = -\ln \left(\frac{x}{x_0} \right) \quad x_0 = l \]

\[\frac{v}{v_0} = \frac{l}{x} \]

\[v = \frac{v_0 l}{x} \]

Plug into \(F \) from part a) but with \(x \) as distance.

\[F = \frac{Mv^2}{x} = \frac{Mv_0^2 l^2}{x^3} \]