Physics 228

Today:

Zeeman Effect
Spin
Many-Electron Atoms
Class Average: 68.8 (69%) Standard Deviation: 15.5 (16%)

Exam 1

Class Average: 52.9 (53%) Standard Deviation: 17.5 (18%)

Exam 2
Clicker Question

A potential-energy function is shown. If a quantum-mechanical particle has energy $E < U_0$, it is impossible to find the particle in the region.

A) $x < 0$.
B) $0 < x < L$.
C) $x > L$.
D) misleading question — the particle can be found at any x.
The first three wave functions for a finite square well are shown. The probability of finding the particle at $x > L$ is

A) least for $n = 1$.

B) least for $n = 2$.

C) least for $n = 3$.

D) the same (and nonzero) for $n = 1, 2, \text{ and } 3$.

E) zero for $n = 1, 2, \text{ and } 3$.
Shown here is a set of degenerate orbitals belonging to a certain orbital angular momentum quantum number l. These orbitals are

- a) s-orbitals
- b) p-orbitals
- c) d-orbitals
- d) f-orbitals
- e) cannot be determined

The degeneracy $2l + 1 = 5$

Thus $l = 2$
Hydrogen Atom in Magnetic Field

- For an object with a magnetic moment μ, there is an interaction energy with the magnetic field B:

$$U = -\mu \cdot B.$$

- Classically, an electron orbiting around a proton, encircling an area A, corresponds to a circular electric current I, and thus a magnetic moment: $\mu = IA$.

- The current is given by the electron’s charge $(-e)$, velocity v, and orbital radius: $I = -ev/2\pi r$.

- Thus, the magnitude of the magnetic moment is

$$\mu = (-ev/2\pi r)(\pi r^2) = -evr/2 = (-e/2m)L \text{ (L is the angular momentum $rp = rmv$).}$$

$$\mu = (-e/2m)L$$
For a magnetic field in z-direction, the interaction energy thus becomes
\[U = \frac{e}{2m} L \cdot B = \frac{e}{2m} L_z B. \]

Although this has been derived classically, it is true also in quantum mechanics.

For the H atom, we have \(L_z = m_I \hbar \), thus
\[U = \frac{e\hbar}{2m} m_I B. \]

The quantity \(\mu_B = \frac{e\hbar}{2m} \) is called the **Bohr magneton** (a quantization unit of magnetic moment):
\[U = m_I \mu_B B \]

We expect atomic energy levels to split into \((2l + 1)\) magnetic sub-levels when a magnetic field is applied (**Zeeman effect**). Such splitting is indeed observed:
Zeeman effect

\[U = m_l \mu_B B \]

- A magnetic field removes the \((2l+1)\) - fold degeneracy of each \((n, l)\) level.
- The \((2l+1)\) sub-levels have even separations of \(\mu_B B\). Pieter Zeeman discovered this in 1896.
Because angular momentum is conserved, and the photon carries only one unit of angular momentum, allowed transitions must have

\[\Delta l = \pm 1 \quad \text{and} \quad \Delta m_l = 0, \pm 1. \]
The Stern-Gerlach Experiment

1. A beam of atoms is directed parallel to the y-axis.

2. Specially shaped magnet poles produce a strongly nonuniform magnetic field that exerts a net force on the magnetic moments of the atoms.

3. Each atom is deflected upward or downward according to the orientation of its magnetic moment.

- If the magnetic field is not constant, there will be a force on the atom $F = -\nabla U = -m_I\mu_B(\text{dB}/\text{dz})$.

- An atom beam will separate into $2l+1$ separate bunches if there is a B field with enough spatial variation.

- This shows the quantization of the z-component of the magnetic moment, and by inference, the quantization of L_z.
The number of “bunches” should be 2l+1, therefore odd.

This is observed for some atoms.

However, in other cases an even number is seen.

If we interpret this as angular momentum quantization, we require half-integer angular momentum quantum numbers \(j = 1/2, 3/2, \) etc.

The number of sublevels 2j+1 is then even.
Electron Spin

• This half-integral angular momentum also shows up in the Zeeman effect (called “anomalous Zeeman effect”).

• Half-integral angular momentum is now understood as “spin” of the electron.

• Spin is an intrinsic angular momentum that the electrons always have, irrespective of orbital motion.

• For electrons, the magnitude of the spin angular momentum is

\[S = \sqrt{s(s + 1)} \hbar \quad \text{with} \quad s = \frac{1}{2} \quad \text{(spin quantum number)}. \]

• The z-component of the spin angular momentum is

\[S_z = m_s \hbar \quad \text{with} \quad m_s = \pm \frac{1}{2} \quad \text{(spin magnetic quantum number)}. \]

• For many particles (electrons, protons, neutrons, ...) \(s = \frac{1}{2} \). Such particles are called fermions.

• Other particles have integral spin (\(s = 0 \) for the Higgs boson, \(s = 1 \) for the photon). Such particles are called bosons.
Electron Spin Magnetic Moment

• For a classical spinning body of charge $-e$ and mass m (assuming equal charge and mass distribution), we would expect a magnetic moment of $\mu = (-e/2m)L$, where L would be replaced by the spin angular momentum S.

• However, the electron is not a classical spinning body. Its magnetic moment is actually larger than expected classically:

$$\mu = g(e/2m)S$$

• The “quantum mechanics” factor g is called the “g-factor” (duh).

• Classical mechanics predicts $g = -1$.

• Experimentally, $g = -2.002319304361$ (the most precisely known fundamental constant in physics!!)

• Nonrelativistic QM (Schroedinger equation) makes no prediction at all. Spin has to be added in an ad-hoc manner (without derivation).

• Relativistic QM (Dirac equation) predicts $g = -2$ (exactly).

• Another refinement of relativistic QM (quantum electrodynamics) predicts $g = -2.002319304361$ (The most accurate theoretical prediction in physics!!)
Anomalous Zeeman Effect

As a result of spin, in each of the H-atom energy levels the electron can be "spin up" or "spin down". Thus, even for s-orbitals, the spin gives rise to a two-fold Zeeman splitting in a magnetic field.

\[\mathbf{U} = g m_s \mu_B B \text{ (spin)} \]

\[E_s + (5.795 \times 10^{-5} \text{ eV/T})B \]

\[E_s - (5.795 \times 10^{-5} \text{ eV/T})B \]

Spin up
\[m_s = +\frac{1}{2} \]

Spin down
\[m_s = -\frac{1}{2} \]
What is the magnitude of the spin angular momentum of an electron?

a) 0
b) \hbar
c) $\hbar/2$
d) $+\hbar/2$ or $-\hbar/2$, depending on whether spin is “up” or “down”
e) $\frac{3}{4}\hbar$

$$S = \sqrt{s(s+1)}\hbar = \sqrt{\frac{1}{2} \left(\frac{1}{2} + 1\right)}\hbar = \frac{3}{4}\hbar$$
Adding Angular Momenta

If there is both orbital and spin angular momentum, what often matters most is the total angular momentum $J = L + S$. J is characterized by quantum number j, with the magnitude of J given by

$$J = \sqrt{j(j + 1)}\hbar.$$

For $l > 0$, j may take on one of two values: $j = l + \frac{1}{2}$, or $j = l - \frac{1}{2}$. For $l = 0$, $j = \frac{1}{2}$.
The **Dirac equation** predicts the energy of atomic levels to depend on the magnitude of the total angular momentum \(\mathbf{J} = \mathbf{L} + \mathbf{S} \), and thus on the relative orientation of \(\mathbf{L} \) and \(\mathbf{S} \) (there is a term proportional to \(\mathbf{L} \cdot \mathbf{S} \): “spin-orbit coupling”).

Spin-orbit coupling leads to a splitting of spin-up and spin-down electron states even in the absence of a magnetic field! (It is as if there were a magnetic field in the direction of \(\mathbf{L} \)).

Spin-orbit splitting atomic spectra is referred to as “**fine structure**”. The predicted fine structure is experimentally observed to high precision.
Many Electron Atoms

In heavier atoms, the nucleus has charge Ze.

The electrons in orbit about the nucleus repel each other.

This leads to “screening” of outer electrons by inner electrons: The potential is no longer $1/r$.

As a consequence, the energy levels of different l quantum numbers (same n) are no longer degenerate.

Accurate calculations are much more complicated than for hydrogen (“Coulomb correlations”).

On average, the $2s$ electron is considerably farther from the nucleus than the $1s$ electrons. Therefore, it experiences a net nuclear charge of approximately $+3e - 2e = +e$ (rather than $+3e$).
Pauli Exclusion Principle

• The Pauli exclusion principle states that each single-particle state (characterized by the four quantum numbers n, l, m_l, m_s) can accommodate no more than one electron.

• As a consequence, as we add electrons to an atom, the inner shells “fill up” first, then the more weakly bound shells will be populated. (“Aufbau principle”).

• The Pauli exclusion principle applies to all half-integer spin particles, i.e., fermions (incl. protons and neutrons).

• There is no such principle for bosons. For example, a large number of photons may occupy the same quantum state in a laser.