Outline:

- Ampere’s Law.
- Useful symmetries.
- Magnetic fields of an infinite straight wire with current, solenoids, and a current-carrying plane.
Too Many Right-Hand Rules…

Forces on charges/currents in external B

\[\vec{F}_L = q(\vec{v} \times \vec{B}) \]

\[\vec{F} = I(d\vec{l} \times \vec{B}) \]

B field due to moving charges/currents

\[\vec{B}(r) = \frac{\mu_0}{4\pi} q \frac{\vec{v} \times \hat{r}}{r^2} \]

\[\vec{B}(r) = \frac{\mu_0}{4\pi} I \frac{d\vec{l} \times \hat{r}}{r^2} \]

\[\vec{r} = r\hat{r} \]
Electrostatics vs. Magnetostatics

Elementary source of the static E field: point charge (zero-dimensional object, scalar)

- Gauss’ Law:
 \[\oint_{\text{surface}} \vec{E}(\vec{r}) \cdot d\vec{A} = \frac{q_{\text{encl}}}{\varepsilon_0} \]
 - valid in electrodynamics!

 \[\oint_{\text{loop}} \vec{E}(\vec{r}) \cdot d\vec{l} = 0 \]
 - only in electrostatics, to be modified in electrodynamics.

Elementary source of the static B field: current segment (one-dimensional object, vector)

- Absence of magnetic monopoles:
 \[\oint_{\text{surface}} \vec{B}(\vec{r}) \cdot d\vec{A} = 0 \]
 - valid in electrodynamics!

 \[\oint_{\text{loop}} \vec{B}(\vec{r}) \cdot d\vec{l} \neq 0 \]
 ⇒ we cannot associate a scalar potential with the B field.
Circulation of B

Path for calculation of circulation ("Amperian" loop)

The B field at a distance r from a straight wire with current:

$$B(r) = \frac{\mu_0 I}{2\pi r}$$

$$\Rightarrow \oint \vec{B}(\vec{r}) \cdot d\vec{l} = \mu_0 I$$

The circulation of the B field $\neq 0$ if the enclosed-by-the-loop current $\neq 0$.

$$\oint \vec{B}(\vec{r}) \cdot d\vec{l} = \oint_{1} \vec{B}(\vec{r}) \cdot d\vec{l} + \oint_{2} \vec{B}(\vec{r}) \cdot d\vec{l} + \oint_{3} \vec{B}(\vec{r}) \cdot d\vec{l} + \oint_{4} \vec{B}(\vec{r}) \cdot d\vec{l}$$

$$= 0 + \frac{\mu_0 I}{2\pi} \varphi + 0 - \frac{\mu_0 I}{2\pi} \varphi = 0$$

For a loop that doesn’t enclose any current, the circulation is 0.
Ampere’s Law

Circulation of the magnetic field around any closed loop: (magnetostatics)

\[\oint \vec{B}(r) \cdot d\vec{l} = \mu_0 I_{encl} \]

loop

\[I_{encl} \equiv \int_{area} j(r) \cdot d\vec{a} \]
- the flux of current density through the surface bounded by the loop.

“Discrete” enclosed currents:

\[I_{encl} = \sum_{i} I_i \]

Mutual orientation of the loop for calculation of B circulation and the surface for calculation of \(I_{encl} \): the curled fingers are aligned along \(d\vec{l} \), the thumb points in the direction of “positive” \(d\vec{a} \). Thus, for the currents in the Figure

\[\sum_{i} I_i = I_1 - I_2 + I_3 \]
Gauss’ Law vs. Ampere’s Law

Similar to Gauss’ Law, Ampere’s Law is very useful whenever it is possible to reduce a 3D (vector) problem to a 1D (scalar) problem. The key is the proper symmetry of a problem.

\[\oint \vec{E}(r) \cdot d\vec{A} = \frac{q_{encl}}{\epsilon_0} \]

\[\oint \vec{B}(r) \cdot d\vec{l} = \mu_0 I_{encl} \]

Symmetry: if a charge distribution is unchanged by rotations, translations, and reflections, then the \(E \) field is also unchanged by the same transformation.

Symmetry: if a current distribution is unchanged by rotations and translations, then the \(B \) field is also unchanged by the same transformation.

Exception: reflections.

«Useful» symmetries:

- Axial + translational (an infinite cylinder)
- Spherical
- Infinite slab (plane)

- Axial + translational (an infinite cylinder)
- Infinite solenoid
- Infinite slab (plane)
Gauss’ Law vs. Ampere’s Law

Exception: reflections.

«Useful» symmetries:
- Axial + translational (an infinite cylinder)
- Spherical
- Infinite slab (plane)

| - Axial + translational (an infinite cylinder) | - Axial + translational (an infinite cylinder) |
| - Infinite solenoid | - Infinite slab (plane) |

Why not Spherical symmetry?

Imagine that you “inject” a charge \(Q \) into a conducting medium. There will be a spherically-symmetric charge flow (current). But you cannot find the \(B \) field using the Ampere’s Law. Why?

Because this is NOT a time-independent situation (there is a time-dependent electric field due to the charge flow).
Mirror Reflection Symmetry

Electric field
- Uniformly charged circle
- \(\vec{E} \) is parallel to the mirror plane at any point on the plane.

Magnetic field
- \(\vec{B} \) is perpendicular to the mirror plane at any point on the plane.
- Top view

The Mirror Rule for Magnetic Fields:
- If we can slice a current distribution with a mirror in such a way that the distribution looks exactly the same after we insert the mirror as before, then \(\vec{B} \) at any point on the mirror’s surface will be perpendicular to that surface.
Axial + Translational Symmetry

An infinite cylinder carrying a current whose density depends (at most) on the distance \(r \) from the axis.

Symmetries of the current distribution:
- rotations around the axis;
- translations along the axis;
- reflections across any plane containing the axis.

\(B(r) \) is tangent to a circle centered at the axis and may depend only on the distance from the axis.

Amperian loop: a circle centered at the axis
\[
\oint_{\text{loop}} \vec{B}(r) \cdot d\vec{l} = \mu_0 I_{\text{encl}}
\]

Example: A circular wire of radius \(R \) with a \textit{uniform} current density \(j = I/(\pi R^2) \):

\[
\begin{align*}
r < R: & \quad B(r)2\pi r = \mu_0 I \frac{r^2}{R^2} \quad B(r) = \frac{\mu_0 I r}{2\pi R^2} \\
r > R: & \quad B(r)2\pi r = \mu_0 I \quad B(r) = \frac{\mu_0 I}{2\pi r}
\end{align*}
\]
Appendix V: Magnetic Field of a Straight Wire Segment

Find \(B \) at a distance \(r \) from a straight wire segment carrying \(I \).

Let’s choose the origin at the point where we measure \(B \) (\(\vec{r} = 0 \)):

\[
\vec{B}(\vec{r} = 0) = \frac{\mu_0}{4\pi} I \int \frac{d\vec{l} \times (-\vec{r}')}{|-\vec{r}'|^3}
\]

Express \(d\vec{l} \) and \(\vec{r}' \) in terms of \(r \) and \(\alpha \):

\[
l = r \tan \alpha \quad dl = r \frac{1}{\cos^2 \alpha} \, d\alpha \quad r' = \frac{r}{\cos \alpha}
\]

\[
|d\vec{l} \times (-\vec{r}')| = dl \cdot r' \cdot \sin(90 + \alpha) = dl \cdot r' \cdot \cos(\alpha) = \frac{rd\alpha}{\cos^2 \alpha} \cdot r = \frac{r^2 d\alpha}{\cos^2 \alpha}
\]

\[
B(r) = \frac{\mu_0}{4\pi} I \int_{\alpha_1}^{\alpha_2} \frac{r^2}{\cos^2 \alpha} \frac{\cos^3 \alpha}{r^3} \, d\alpha = \frac{\mu_0 I}{4\pi r} \int_{\alpha_1}^{\alpha_2} \cos \alpha \, d\alpha = \frac{\mu_0 I}{4\pi r} (\sin \alpha_2 - \sin \alpha_1)
\]

Example: Magnetic field of a square loop with current at the center of the loop (\(\alpha_2 = \frac{\pi}{4}, \alpha_1 = -\frac{\pi}{4} \)):

\[
\vec{B}(r) = \sum_i \vec{B_i} = 4 \frac{\mu_0 I}{4\pi \alpha/2} 2\sin \frac{\pi}{4} = \frac{4\mu_0 I}{\sqrt{2\pi} \alpha}
\]
Any charge distribution that can be considered as *superposition* of symmetrical charge distributions can be treated on the basis of Ampere’s Law.

\[b < r < c \quad B(r)2\pi r = \mu_0 \left(I - I \frac{\pi(r^2-b^2)}{\pi(c^2-b^2)} \right) = \mu_0 I \frac{c^2-r^2}{c^2-b^2} \]

\[B(r) = \frac{\mu_0 I \ c^2 - r^2 \ c^2 - b^2}{2\pi r} \]
Field of an Infinite Solenoid

Approximation: the solenoid’s radius is much smaller than its length, and we evaluate the field far from the solenoid’s ends.

The solenoid carries current I, the number of turns per unit length is n.

Symmetries of the current distribution:
- rotations around the axis;
- translations along the axis;
- reflections across any plane perpendicular to the axis.

B at any point is directed *along* the axis; it can depend only on the distance from the axis.

Loop 1:
\[
\oint_{\text{loop}} \vec{B}(r) \cdot d\vec{l} = B_{\text{top}}L - B_{\text{bot}}L = 0 \quad \text{- field inside is uniform}
\]

Loop 2:
\[
\oint_{\text{loop}} \vec{B}(r) \cdot d\vec{l} = B_{\text{top}}L \pm B_{\text{bot}}L = \mu_0 nIL \quad \text{- field outside is also uniform}
\]

Ampere’s Law allows us to calculate only the combination $B_{\text{top}} \pm B_{\text{bot}} = \mu_0 nI$.

Experimental fact: $B_{\text{outside}} = 0$.

\[B_{\text{inside}} = \mu_0 nI\]
\[B_{\text{outside}} = 0\]
Field of a Finite Solenoid

\[B_{\text{end}} = \frac{1}{2} \mu_0 I n \]

- only for a “semi-infinite” solenoid
Infinite Slab

Symmetries of the current distribution:
- translations along the plane;
- reflections across any xz plane;
- reflections across the yz plane centered at the slab.

B is directed along y everywhere, it is zero along the yz plane centered at the slab.

Amperian loop: rectangle in the xy plane of length l along y, one side is centered at the slab ($B=0$ at the center due to symmetry)

\[Bl = \mu_0 jx l \quad \vec{B}(x) = -\mu_0 jx\hat{j} \]

For an infinitely thin slab with the linear current density $K = 2aj$

\[K = 2aj \]
Appendix I. Magnetic Field as a Pseudovector

The magnetic field, being a cross product of two polar (or true) vectors, $\propto \vec{r} \times \vec{I}$, is a pseudovector (or an axial vector).

A pseudovector transforms like a true vector under a proper rotation, but gains an additional sign flip under an improper rotation such as a reflection (including inversion). Geometrically the pseudovector is the opposite of its mirror image (in contrast to a polar vector, which on reflection matches its mirror image). Examples of pseudovectors: angular velocity, torque, and angular momentum.

Another example: magnetic field of a current-carrying wire loop. If the position and current of the wire are reflected across the dashed line, the magnetic field it generates would be reflected and reversed.
Appendix II: Continuous Current Distribution

\[\vec{j}(\vec{r}) \] - local current density

\[I_{encl} = \int_{surface} \vec{j}(r) \cdot d\vec{a} \] the flux of the current vector field

\[\oint_{loop} \vec{B}(r) \cdot d\vec{l} = \mu_0 \int_{surface} \vec{j}(r) \cdot d\vec{a} \]

There are infinitely many possible surfaces that have the loop as their border. Which of those surfaces is to be chosen? It does not matter; for all these surfaces \(\int_{surface} \vec{j}(r) \cdot d\vec{a} \) would be the same (due to the continuity equation for charge).
Appendix III: Field of a Toroidal Solenoid

Symmetries of the current distribution:
- rotations around the center in the plane of the toroid;
- reflections across any plane perpendicular to the plane of the toroid and going through its center.

the radial component of B is zero; B can depend only on the distance from the axis.

Amperian loops: circles centered at the toroid’s axis

Loop 1 \[B(r)2\pi r = 0 \quad B(r) = 0 \quad r < r_1 \]

Loop 2 \[B(r)2\pi r = \mu_0IN \quad B(r) = \frac{\mu_0IN}{2\pi r} \quad r_1 < r < r_2 \]

Loop 3 \[B(r)2\pi r = 0 \quad B(r) = 0 \quad r > r_2 \]