Lecture

- Review: Conductors
- Electric Field from Electric Potential
- Parallel plates
- Capacitance
An **equipotential** is a line or surface over which the potential is constant.

- Electric field lines are perpendicular to equipotentials.
- The surface of a conductor is an equipotential.
ICLICKER QUESTION

Which point corresponds to the greatest magnitude of the electric field?

\[\Delta V_{ba} = - \int_a^b \vec{E} \cdot d\vec{\ell} \]

a) A
b) B

c) C
d) D
e) They are all the same.
Electric Field From Electric Potential

• The potential difference between two points a distance $d\ell$ apart is:

$$dV = -\vec{E} \cdot d\ell$$

• Consider a field entirely in the x-direction, then:

$$dV = -Edx$$

$$\Rightarrow E = -\frac{dV}{dx}$$

• That is, the x-component of the electric field is:

$$\vec{E}_x = -\frac{dV}{dx} \hat{i}$$
Determining \(\vec{E} \) from \(V \)

- In general for any field \(\vec{E}(x, y, z) \) and \(d\vec{\ell} \):

\[
\vec{E} = E_x \hat{i} + E_y \hat{j} + E_z \hat{k}
\]

\[
d\vec{\ell} = \hat{i} dz + \hat{j} dy + \hat{k} dz
\]

\[
dV = -\vec{E} \cdot d\vec{\ell}
\]

\[
-dV = E_x dx + E_y dy + E_z dz
\]

\[
\vec{E} = -\left(\frac{\partial V}{\partial x} \hat{i} + \frac{\partial V}{\partial y} \hat{j} + \frac{\partial V}{\partial z} \hat{k} \right)
\]

\[
\vec{v} = \left(\frac{\partial}{\partial x} \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k} \right) \text{[Gradient Operator]}
\]
ICLICKER QUESTION

Consider two concentric spherical conducting shells. One shell of radius “b” and charge “-Q” and one shell of radius “a” and charge “+Q”. What is the potential difference between the shells?

a) \(k \frac{Q}{b} \)

b) \(k \frac{Q}{a} \)

c) \(k \frac{Q}{b-a} \)

d) \(kQ \left[\frac{1}{b} - \frac{1}{a} \right] \)

e) None of the other answers.
E-Field Between Parallel Plates

- A battery produces a specified potential difference ΔV between its terminals.
- Consider a 12V battery connected by conducting wires to two parallel conducting plates separated by a distance $d=0.3$ mm.

- The potential difference between the plates is equal to the potential difference between the terminals of the battery (12V).
- The electric field points from A to B and its magnitude is $E = \frac{|V_A - V_B|}{d} = 4 \times 10^3 \frac{V}{m}$.
Capacitance

A capacitor consists of two conductors that are close but not touching.

A capacitor has the ability to store electric charge.
(a) Parallel-plate capacitor connected to a battery.

(b) is a circuit diagram.
Capacitance

• When a capacitor is connected to a battery, the charge on its plates is proportional to the voltage: $Q \propto \Delta V$.

\[Q = C\Delta V \]

• The proportionality constant C is called the capacitance: (Capacitance $C = \frac{Q}{\Delta V}$).

• By definition, the capacitance “C”, is always a positive quantity (i.e. Q and ΔV in the equation above are always expressed as positive quantities).
Units of Capacitance

Unit of capacitance: the farad (F)

$$1 \, F = 1 \frac{C}{V}$$

Michael Faraday
ICLICKER QUESTION

Capacitor C_1 is connected across a battery of 5 V. An identical capacitor C_2 is connected across a battery of 10 V. Which one has the most charge?

a) C_1

b) C_2

c) Both have the same charge

d) It depends on other factors

$Q = C \Delta V$
Find the capacitance of the spherical capacitor consisting of two concentric spherical shells one of radius “a” and one of radius “b”.

\[Q = C \Delta V \]
\[\Delta V = kQ \left[\frac{1}{b} - \frac{1}{a} \right] = kQ \left[\frac{b-a}{ab} \right] \]

a) \(kQ \left[\frac{b-a}{ab} \right] \)

b) \(\frac{ab}{k(b-a)} \)

c) \(\frac{ab}{kQ(b-a)} \)

d) None of the other answers.
Capacitance

Note that the capacitance does not depend on the voltage “ΔV” or charge “Q”;

• it is a function of the geometry and the distance “d” between the conductors.
Capacitance

For a parallel-plate capacitor:

\[|\vec{E}| = \frac{\sigma}{\varepsilon_0} = \frac{Q}{A\varepsilon_0} \]

\[|\Delta V| = E d = \frac{Q d}{A\varepsilon_0} \]

\[C = \varepsilon_0 \frac{A}{d} \quad [Parallel\,-\,plate\,Capacitor] \]

- The capacitance of a parallel plate capacitor is proportional to the area of its plates and inversely proportional to the plate separation.
ICLICKER QUESTION

A parallel-plate capacitor initially has a voltage of 400 V and stays connected to the battery. If the plate spacing is now doubled, what happens?

a) the voltage decreases
b) the voltage increases
c) the charge decreases
d) the charge increases
e) both voltage and charge change

\[Q = C \Delta V \quad \quad C = \varepsilon_0 \frac{A}{d} \]