Outline:

- Ampere’s Law.
- Useful symmetries.
- Magnetic fields of an infinite straight wire with current, solenoids, and a current-carrying plane.
Forces on charges/currents in external B

$$\vec{F} = q(\vec{v} \times \vec{B})$$

$$\vec{F} = I(d\vec{l} \times \vec{B})$$

B field due to moving charges/currents

$$\vec{B}(r) = \frac{\mu_0}{4\pi} \frac{q \vec{v} \times \hat{r}}{r^2}$$

$$\vec{B}(r) = \frac{\mu_0}{4\pi} \frac{I d\vec{l} \times \hat{r}}{r^2}$$
Electrostatics vs. Magnetostatics

Elementary source of the static \(\vec{E} \) field: point charge (zero-dimensional object, scalar)

Elementary source of the static \(\vec{B} \) field: current segment (one-dimensional object, vector)

Gauss’ Law:

\[
\oint_{\text{surface}} \vec{E}(\vec{r}) \cdot d\vec{A} = \frac{q_{\text{encl}}}{\varepsilon_0}
\]

- valid in electrodynamics!

\[
\oint_{\text{loop}} \vec{E}(\vec{r}) \cdot d\vec{l} = 0
\]

- only in electrostatics, to be modified in electrodynamics.

\[
\oint_{\text{loop}} \vec{B}(\vec{r}) \cdot d\vec{l} \neq 0
\]

- cannot be an electrostatic field

Absence of magnetic monopoles:

\[
\oint_{\text{surface}} \vec{B}(\vec{r}) \cdot d\vec{A} = 0
\]

- valid in electrodynamics!

In general, \(\oint_{\text{loop}} \vec{B}(\vec{r}) \cdot d\vec{l} \neq 0 \)

\(\Rightarrow \) we cannot associate a scalar potential with the \(\vec{B} \) field
Circulation of B

The circulation of the B field $\neq 0$ if the enclosed-by-the-loop current $\neq 0$.

The B field at a distance r from a straight wire with current I:

$$B(r) = \frac{\mu_0 I}{2\pi r}$$

$$\oint \vec{B}(\vec{r}) \cdot d\vec{l} = \mu_0 I$$

For a loop that doesn’t enclose any current, the circulation is 0.
Ampere’s Law

Circulation of the magnetic field around any loop: (magnetostatics)

\[
\oint \mathbf{B}(r) \cdot d\mathbf{l} = \mu_0 I_{encl}
\]

\(I_{encl} \equiv \int \mathbf{j}(r) \cdot d\mathbf{a}\) \(-\) the flux of current density through the surface bounded by the loop.

“Discrete” enclosed currents: \(I_{encl} = \sum_i I_i\)

Mutual orientation of the loop for calculation of \(B\) circulation and the surface for calculation of \(I_{encl}\): the curled fingers are aligned along \(d\mathbf{l}\), the thumb points in the direction of “positive” \(d\mathbf{a}\). Thus, for the currents in the Figure

\[
\sum_i I_i = I_1 - I_2 + I_3
\]
The figure shows, in cross section, three conductors that carry currents perpendicular to the plane of the figure.

If the currents I_1, I_2, and I_3 all have the same magnitude, for which path(s) is the line integral of the magnetic field equal to zero?

A. path a only
B. paths a and c
C. paths b and d
D. paths a, b, c, and d
E. The answer depends on whether the integral goes clockwise or counterclockwise around the path.
The figure shows, in cross section, three conductors that carry currents perpendicular to the plane of the figure.

If the currents I_1, I_2, and I_3 all have the same magnitude, for which path(s) is the line integral of the magnetic field equal to zero?

A. path a only
B. paths a and c
C. paths b and d
D. paths a, b, c, and d
E. The answer depends on whether the integral goes clockwise or counterclockwise around the path.
Gauss’ Law vs. Ampere’s Law

Similar to Gauss’ Law, Ampere’s Law is very useful whenever it is possible to reduce a 3D (vector) problem to a 1D (scalar) problem. The key is the proper symmetry of a problem.

\[\oint \vec{E}(r) \cdot d\vec{A} = \frac{q_{encl}}{\epsilon_0} \]

\[\oint \vec{B}(r) \cdot d\vec{l} = \mu_0 I_{encl} \]

Symmetry: if a charge distribution is unchanged by rotations, translations, and reflections, then the \(E \) field is also unchanged by the same transformation.

Symmetry: if a current distribution is unchanged by rotations and translations, then the \(B \) field is also unchanged by the same transformation.

Exception: reflections.

«Useful» symmetries:

- Axial + translational (an infinite cylinder)
- Spherical
- Infinite slab (plane)

- Axial + translational (an infinite cylinder)
- Infinite solenoid
- Infinite slab (plane)
Gauss’ Law vs. Ampere’s Law

«Useful» symmetries:
- Axial + translational (an infinite cylinder)
- Spherical
- Infinite slab (plane)

- Axial + translational (an infinite cylinder)
- Infinite solenoid
- Infinite slab (plane)

Exception: reflections.

Why not Spherical symmetry?
Imagine that you “inject” a charge Q into a conducting medium. There will be a spherically-symmetric charge flow (current). But you cannot find the B field using the Ampere’s Law. Why?

Because this is NOT a time-independent situation (there is a time-dependent electric field due to the charge flow).
Mirror Reflection Symmetry

Electric field

\[\vec{E} \text{ is parallel to the mirror plane at any point on the plane.} \]

Magnetic field

\[\vec{B} \text{ is perpendicular to the mirror plane at any point on the plane.} \]

The Mirror Rule for Magnetic Fields:

if we can slice a current distribution with a mirror in such a way that the distribution looks exactly the same after we insert the mirror as before, then \(\vec{B} \) at any point on the mirror’s surface will be perpendicular to that surface.
Axial + Translational Symmetry

An infinite cylinder carrying a current whose density depends (at most) on the distance r from the axis.

Symmetries of the current distribution:
- rotations around the axis;
- translations along the axis;
- reflections across any plane containing the axis.

$B(r)$ is tangent to a circle centered at the axis and may depend only on the distance from the axis.

Amperian loop: a circle centered at the axis

$$\oint_{\text{loop}} \vec{B}(r) \cdot d\vec{l} = \mu_0 I_{\text{encl}}$$

Example: A circular wire of radius R with a uniform current density $j = I / (\pi R^2)$:

$$r < R: \quad B(r)2\pi r = \mu_0 I \frac{r^2}{R^2} \quad B(r) = \frac{\mu_0 Ir}{2\pi R^2} \quad r > R: \quad B(r)2\pi r = \mu_0 I \quad B(r) = \frac{\mu_0 I}{2\pi r}$$
Any charge distribution that can be considered as **superposition** of symmetrical charge distributions can be treated on the basis of Ampere’s Law.

\[
b < r < c \quad B(r)2\pi r = \mu_0 \left(I - I \frac{\pi (r^2 - b^2)}{\pi (c^2 - b^2)} \right) = \mu_0 I \frac{c^2 - r^2}{c^2 - b^2}
\]

\[
B(r) = \frac{\mu_0 I}{2\pi r} \frac{c^2 - r^2}{c^2 - b^2}
\]
Field of an Infinite Solenoid

Approximation: the solenoid’s radius is much smaller than its length, and we evaluate the field far from the solenoid’s ends.

The solenoid carries current \(I \), the number of turns per unit length is \(n \).

Symmetries of the current distribution:
- rotations around the axis;
- translations along the axis;
- reflections across any plane perpendicular to the axis.

\(B \) at any point is directed **along** the axis; it can depend only on the distance from the axis.

Loop 1:
\[
\int_{\text{loop}} \vec{B}(r) \cdot d\vec{l} = B_{\text{top}}L - B_{\text{bot}}L = 0
\]
- field inside is **uniform**

Loop 2:
\[
\int_{\text{loop}} \vec{B}(r) \cdot d\vec{l} = B_{\text{top}}L \pm B_{\text{bot}}L = \mu_0 n IL
\]
- field outside is also **uniform**

Ampere’s Law allows us to calculate only the **combination** \(B_{\text{top}} \pm B_{\text{bot}} = \mu_0 n I \).

Experimental fact: \(B_{\text{outside}} = 0 \).
Field of a Finite Solenoid

\[B_{\text{end}} = \frac{1}{2} \mu_0 I n \]

- only for a “semi-infinite” solenoid
Symmetries of the current distribution:
- translations along the plane;
- reflections across any xz plane
- reflections across the yz plane centered at the slab.

B is directed along y everywhere, it is zero along the yz plane centered at the slab.

Amperian loop: rectangle in the xy plane of length l along y, one side is centered at the slab ($B=0$ at the center due to symmetry)

\[
Bl = \mu_0 j xl \\
\vec{B}(x) = -\mu_0 j x \hat{j}
\]

For an infinitely thin slab with the linear current density $K = 2aj$ (current per unit length)

\[
K = 2aj
\]
Pressure on Solenoid Walls

\[B_{in} = \mu_0 nI = \mu_0 K \]

\[K = nI - \text{linear current density (per unit length)} \]

Total force per unit area \(1m^2\) (pressure) on a current-carrying sheet:

\[P = nI B_{ext} = KB_{ext} = K \frac{\mu_0 K}{2} = \frac{1}{2\mu_0} B_{in}^2 \]

For a 10T solenoid:

\[P = \frac{10^7}{8\pi} 10^2 Pa \approx 4 \cdot 10^7 Pa \approx 400bar \]

Ultra-strong mag. fields: problem of mechanical stability of solenoids
Axial + Translational Symmetry

\[r < R: B(r) = \frac{\mu_0 I r}{2\pi R^2} \]

\[r > R: B(r) = \frac{\mu_0 I}{2\pi r} \]

Infinite Solenoid

\[B_{\text{inside}} = \mu_0 n I \]
\[B_{\text{outside}} = 0 \]

Toroidal Solenoid

\[B(r) = \frac{\mu_0 I N}{2\pi r} \]
\[r_1 < r < r_2 \]

Infinite Slab

Infinitely thin slab with linear current density \(K \)

\[B = \mu_0 \frac{K}{2} \]
The magnetic field, being a cross product of two polar (or true) vectors, $\propto \vec{r} \times \vec{I}$, is a pseudovector (or an axial vector).

A pseudovector transforms like a true vector under a **proper rotation**, but gains an additional sign flip under an **improper rotation** such as a reflection (including inversion). Geometrically the pseudovector is the opposite of its mirror image (in contrast to a polar vector, which on reflection matches its mirror image). Examples of pseudovectors: **angular velocity, torque, and angular momentum**.

Another example: magnetic field of a current-carrying wire loop. If the position and current of the wire are reflected across the dashed line, the magnetic field it generates would be **reflected and reversed**.
Appendix II: Continuous Current Distribution

\[\vec{j}(\vec{r}) \] - local current density

The flux of the current vector field

\[I_{encl} = \int_{surface} \vec{j}(r) \cdot d\vec{a} \]

\[\oint_{loop} \vec{B}(r) \cdot d\vec{l} = \mu_0 \int_{surface} \vec{j}(r) \cdot d\vec{a} \]

There are infinitely many possible surfaces that have the loop as their border. Which of those surfaces is to be chosen? It does not matter; for all these surfaces \(\int_{surface} \vec{j}(r) \cdot d\vec{a} \) would be the same (due to the continuity equation for charge).
Appendix III: Field of a Toroidal Solenoid

Symmetries of the current distribution:
- rotations around the center in the plane of the toroid;
- reflections across any plane perpendicular to the plane of the toroid and going through its center.

the radial component of B is zero; B can depend only on the distance from the axis.

Amperian loops: circles centered at the toroid’s axis

Loop 1 $B(r)2\pi r = 0$ $B(r) = 0$ $r < r_1$

Loop 2 $B(r)2\pi r = \mu_0 IN$ $B(r) = \frac{\mu_0 IN}{2\pi r}$ $r_1 < r < r_2$

Loop 3 $B(r)2\pi r = 0$ $B(r) = 0$ $r > r_2$