Physics 124 Prelab 4 Week of Feb 18 2019– Simple Harmonic Motion

Purpose: Use the principles of Simple Harmonic Motion to find the spring constant, \(k \), using two methods.

METHOD 1
When no mass is hung from the spring with spring constant \(k \), it extends a distance \(x \). When a mass \(M \) is hung from a spring it extends an additional distance \(\Delta x \) downwards from its original position.

a. Write down the sum of the forces on the mass \(M \) in the \(y \)-direction.

b. Solve for the spring constant \(k \) in terms of \(M \), \(\Delta x \) and any other constants you need to introduce. What are the units of \(k \)?

METHOD 2
A mass \(M \) is hung from the same spring and given a small pull downwards and let go. The spring-mass system starts oscillating with a period of \(T \).

a. What is the relationship between the angular frequency \(\omega \) and the time period \(T \)?

b. What is the relationship between the angular frequency \(\omega \) and the mass \(M \) and the spring constant \(k \)?

c. Use the above two equations to express the spring constant \(k \) in terms of the mass \(M \) and time period \(T \).