The picture above shows a rotating disk of mass M and radius R. The timer is used to determine the time for one rotation, T, used to get the angular velocity ω. The initial angular momentum of the system, L_i, is the product of the moment of inertia, I_i, and initial angular velocity, ω_i, of the rotating disk. Then a new, non-rotating ring of mass m and radius r is carefully dropped onto the rotating disk. The whole system now rotates with a slower final angular velocity ω_f because of the new total moment of inertia, I_f, is now the sum of the moments of inertia of the disk and ring.

Fill in the blanks with the appropriate expressions using the elements mentioned above. Show your work.

Conservation of angular momentum requires

$$L_i = L_f \quad \text{or equivalently} \quad I_i \omega_i = I_f \omega_f$$

Initially we only have the disk rotating, with

$$I_i = I_{disk} = \text{__________________________}, \quad \text{where}$$

$$\omega_i = \text{__________}$$

then we have the disk and the ring with

$$I_f = I_{disk} + I_{ring} = \text{__________________________} \quad \text{and} \quad \omega_f = \text{______________}$$

In this week’s workshop, you will find the moments of inertia and the angular velocities, and check that angular momentum has been conserved, i.e. $I_i \omega_i = I_f \omega_f$