Midterm II

• Sunday November 12th 12:00pm in the Physics Lecture Hall

• Forces I and II i.e. Chapters 5 and 6 in textbook, Lectures 5,6,7 and first half of 8

• No energy and work
7. Kinetic energy and work

Energy

- Kinetic energy: associated to motion
- Potential energy: associated to the capacity of generating motion
• **Kinetic Energy**: energy associated to the motion of an object

\[K = \frac{1}{2}mv^2 \]

• **Work-Kinetic Energy Theorem**

\[
\begin{align*}
\text{(change in the kinetic energy of a particle)} &= \text{(net work done on the particle)}.
\end{align*}
\]

\[\Delta K = W \quad K_f = K_i + W \]

\(W = \) net work done by all forces acting on the system
• For **straight** path and **constant** net force

\[W = \vec{F}_{\text{net}} \cdot \vec{d} \]

where

\[\vec{d} = \Delta \vec{r} \]

is the displacement.

• For **curved path** and **variable** net force:

Infinitsimal work: \[\delta W = \vec{F}_{\text{net}} \cdot d\vec{s} \]

Total work: \[W = \int_{\text{trajectory}} \vec{F}_{\text{net}} \cdot d\vec{s} \]
Kinetic-energy theorem in infinitesimal form

\[dK = \delta W \]

instantaneous relation at any point along the trajectory.

\[\Delta K = \int_{\text{trajectory}} \vec{F}_{\text{net}} \cdot d\vec{s} \]

for the entire motion.
Example

A ball of mass m attached to string is launched with initial speed v_0 on a circular trajectory on horizontal plane. The friction force between the ball and the surface has constant magnitude f_k. What is the speed of the ball after travelling a distance s along the circle.
Infinitesimal displacement
\[\vec{ds} = \vec{v} dt \]

Note that \(\vec{T} \perp \vec{ds} \) while \(\vec{f}_k \) makes an angle \(\theta = 180^\circ \) with \(\vec{ds} \).

Infinitesimal work:
\[dW_{f_k} = \vec{f}_k \cdot \vec{ds} = -f_k ds \]

Total work:
\[W = \int dW = -f_k s \]

Work-energy theorem:
\[\frac{mv^2}{2} - \frac{mv_0^2}{2} = -f_k s \]

\[v = \sqrt{v_0^2 - \frac{2f_k s}{m}} \]
• **Work done by the gravitational force**

Freely falling object moving downwards:

\[W = \vec{F}_g \cdot \vec{d} = mgd\cos 0^\circ = mgd > 0 \]

\[K_1 = \frac{mv_1^2}{2} \quad K_2 = \frac{mv_2^2}{2} \]

\[K_2 - K_1 = mgd > 0 \]
Freely falling object moving upwards:

\[W = \vec{F}_g \cdot \vec{d} = mgd \cos 180^\circ = -mgd < 0 \]

\[K_1 = \frac{mv_1^2}{2} \]

\[K_2 = \frac{mv_2^2}{2} \]

\[K_2 - K_1 = -mgd < 0 \]
An object of mass m is launched with initial speed v_0 along an inclined plane making an angle $\theta = 45^\circ$ with the horizontal. The kinetic friction coefficient between the object and the plane is $\mu_k = 0.5$. Let W_{f_k} be the total work done by the friction force until it stops. Which of the following statements is false?

$$A) \ W_{f_k} < 0$$

$$B) \ W_{f_k} = -mv_0^2/2$$

$$C) \ |W_{f_k}| < mv_0^2/2$$
Answer

An object of mass m is launched with initial speed v_0 along an inclined plane making an angle $\theta = 45^\circ$ with the horizontal. The kinetic friction coefficient between the object and the plane is $\mu_k = 0.5$. Let W_{fk} be the total work done by the friction force until it stops. Which of the following statements is false?

A) $W_{fk} < 0$
B) $W_{fk} = -mv_0^2/2$
C) $|W_{fk}| < mv_0^2/2$
\[\vec{F}_{\text{net}} = m\vec{a} \]
\[(F_{\text{net}})_x = ma_x \]
\[(F_{\text{net}})_y = ma_y = 0 \]
\[\vec{F}_{\text{net}} = \vec{F}_g + \vec{F}_N + \vec{f}_k \]
\[(F_{\text{net}})_x = -mg\sin\theta - f_k \]
\[(F_{\text{net}})_y = F_N - mg\cos\theta = 0 \]

\[F_N = mg\cos\theta \]
\[f_k = \mu_k mg\cos\theta \]
Work done by kinetic friction:

\[W_{f_k} = \vec{f}_k \cdot \vec{d} = -f_k d = -\mu_k mgd\cos\theta \]

Work done by gravitational force:

\[W_{F_g} = \vec{F}_g \cdot \vec{d} = -mgh = -mgd\sin\theta \]

Work done by normal force

\[\vec{F}_N \cdot \vec{d} = 0 \]
Total work:
\[W = W_{fk} + W_{Fg} = -mgd(\sin\theta + \mu_k \cos\theta) \]

Work-Kinetic energy theorem:
\[W = \Delta K = 0 - K_i = -\frac{mv_0^2}{2} \]

Work done by kinetic friction:
\[\frac{W_{fk}}{|W|} = -\frac{\mu_k \cos\theta}{\sin\theta + \mu_k \cos\theta} = \frac{1}{3} \]
\[W_{fk} = -\frac{mv_0^2}{6} \]
• **Work done by a spring force**

![Diagram of a spring force](image)

- **Hooke's Law**

 \[\vec{F}_s = -k\vec{d} \]

- always **opposed** to displacement (restoring force)

- \(k > 0 \) **spring constant**
\[W_s = \int_{x_i}^{x_f} F_x \, dx \]
\[= \int_{x_i}^{x_f} -kx \, dx \]
\[= (-k) \int_{x_i}^{x_f} x \, dx \]
\[= (-k/2) \left(x_f^2 - x_i^2 \right) \]

\[W_s = \frac{1}{2} k x_i^2 - \frac{1}{2} k x_f^2 \]
• **Example:** an object of mass m slides across a horizontal frictionless surface with speed v. It then runs into and compresses a spring of spring constant k. When the object is momentarily stopped by the spring, by what distance d is the spring compressed?
Total work done by the spring force:

\[W_s = \frac{kx_i^2}{2} - \frac{kx_f^2}{2} = -\frac{kd^2}{2} \]

Work-kinetic energy theorem

\[W_s = K_f - K_i = -\frac{mv^2}{2} \]

\[\frac{mv^2}{2} = \frac{kd^2}{2} \Rightarrow d = v\sqrt{\frac{m}{k}} \]
• **Power**: time rate at which work is done by a force.

If a force does an amount of work W in an amount of time Δt, the **average power** during that time interval is:

$$P_{\text{average}} = \frac{W}{\Delta t}$$

The **instantaneous power** P is the instantaneous time rate of doing work

$$P = \frac{\delta W}{dt} \quad \delta W = \vec{F} \cdot d\vec{s} = \vec{F} \cdot \vec{v}dt \quad P = \vec{F} \cdot \vec{v}$$
• **Units: Watt**

\[1 \text{ Watt} = 1 \text{ W} = 1 \text{ J/s} \]
8. Potential energy. Conservation of energy

- **Potential energy**: energy associated with the configuration of a system of objects that exert forces on one another.

- can be converted into **kinetic energy** by allowing the system to evolve freely
Gravitational potential energy

A ball at the top of a hill has potential energy but no kinetic energy.

A ball rolling down a hill has both kinetic and potential energy.

A ball at the bottom of the hill which is not rolling has neither potential nor kinetic energy.

A ball which has reached the bottom of the hill but is still rolling has kinetic energy but no potential energy.

Elastic potential energy
• Work and potential energy

First part of motion:

\[W_{Fg} = \Delta K < 0, \quad K \downarrow \]

energy transferred from kinetic energy to gravitational potential energy.

Second part of motion:

\[W_{Fg} = \Delta K > 0, \quad K \uparrow \]

energy transferred from gravitational potential energy to kinetic energy.
First part of motion:

\[W_{Fs} = \Delta K < 0, \quad K \downarrow \]
energy transferred from kinetic energy to elastic potential energy.

Second part of motion:

\[W_{Fs} = \Delta K > 0, \quad K \uparrow \]
energy transferred from elastic potential energy to kinetic energy.
First part of motion:

\[W_{F_g} = mg(y_0 - y_{\text{max}}) \]

\[\Delta K = -\frac{mv_0^2}{2} \]

Constant acceleration model:

\[\frac{mv_0^2}{2} = mg(y_{\text{max}} - y_0) \]

Second part of motion:

\[W_{F_g} = mg(y_{\text{max}} - y_0) \]

\[\Delta K = \frac{mv^2}{2} \]

Constant acceleration model:

\[\frac{mv^2}{2} = mg(y_{\text{max}} - y_0) \]
First part of motion:

\[W_{Fs} = -\frac{kx_{max}^2}{2} \]

\[W_{Fs} = \Delta K = -\frac{mv_0^2}{2} \]

\[\frac{mv_0^2}{2} = \frac{kx_{max}^2}{2} \]

Second part of motion:

\[W_{Fs} = \frac{kx_{max}^2}{2} \]

\[W_{Fs} = \Delta K = \frac{mv^2}{2} \]

\[\frac{mv^2}{2} = \frac{kx_{max}^2}{2} \]
• Note that in both examples examples

\[W_{1\text{-st part}} = -W_{2\text{-nd part}} \]

Gravitational force:

\[\Delta(mgy) = -W_{Fg} \quad K + mgy = \text{constant} \]

Elastic force:

\[\Delta(kx^2/2) = -W_s \quad K + \frac{kx^2}{2} = \text{constant} \]
Naturally led to:

- **Gravitational potential energy:**
 \[U_g = mgy \]

- **Elastic potential energy:**
 \[U_s = \frac{Kx^2}{2} \]

- **Energy conservation:**
 \[K + U_g = \text{constant} \quad K + U_s = \text{constant} \]
Which of the following statements is true?

\[A) \ W_{Fg}^{(a)} > W_{Fg}^{(b)} \]

\[B) \ W_{Fg}^{(a)} < W_{Fg}^{(b)} \]

\[C) \ W_{Fg}^{(a)} = W_{Fg}^{(b)} \]

\[D) \text{ none of the above.} \]
Answer

Which of the following statements is true?

A) $W_{Fg}^{(a)} > W_{Fg}^{(b)}$

B) $W_{Fg}^{(a)} < W_{Fg}^{(b)}$

C) $W_{Fg}^{(a)} = W_{Fg}^{(b)}$

D) none of the above.
\[W = \vec{F}_g \cdot \vec{d} = F_{gx} \Delta x \]

\[F_{gx} = mgsin\theta \]

\[\Delta x = \frac{h}{\sin\theta} \]

\[W = mgh \]
Which of the following statements is true?

A) $W_{Fg}^{(a)} > W_{Fg}^{(b)}$

B) $W_{Fg}^{(a)} < W_{Fg}^{(b)}$

C) $W_{Fg}^{(a)} = W_{Fg}^{(b)}$

D) none of the above.
Answer

Which of the following statements is true?

A) \(W_{Fg}^{(a)} > W_{Fg}^{(b)} \)

B) \(W_{Fg}^{(a)} < W_{Fg}^{(b)} \)

C) \(W_{Fg}^{(a)} = W_{Fg}^{(b)} \)

D) none of the above.
\[W_g = \int \vec{F}_g \cdot d\vec{s} \]

\[\vec{F}_g \cdot d\vec{s} = mgds_y \]

\[W_g = \int_0^h mgds_y \]

\[= mg \int_0^h ds_y \]

\[= mgh. \]

\[W = mgh \]
• **Conservative Forces**

 The work done by the force depends only on the initial and final position of the object, not on the path in between.

 \uparrow

 The net work done by a conservative force on a particle moving around any closed path is zero.
Consequence: when the configuration change is reversed the work changes sign:

$$W_{a \rightarrow b} = -W_{b \rightarrow a}$$
• **Examples:** gravitational force, elastic force

• **Potential energy for conservative forces:** define U such that:

$$\Delta U = U_f - U_i = -W_{i\rightarrow f}$$

Note:

• $W_{i\rightarrow f}$ is path independent, hence this is a consistent relation

• Choosing $U_0 = 0$ for some reference configuration:

$$U_a = -W_{0\rightarrow a}$$
• Gravitational potential energy

\[\Delta U_g = mg(y_f - y_i) \]

Reference configuration: ground level

\[U_g(0) = 0 \Rightarrow U = mgy \]

• Elastic potential energy

\[\Delta U_s = \frac{k}{2}(x_f^2 - x_i^2) \]

Reference configuration: relaxed spring

\[U_s(0) = 0 \Rightarrow U_s = \frac{kx^2}{2} \]
Conservation of Mechanical Energy

In an isolated system where only conservative forces cause energy changes, the kinetic energy and potential energy can change, but their sum, the mechanical energy E_{mec} of the system, cannot change.

Conservative forces, isolated system $\Rightarrow U + K = \text{constant}$
A block of mass m slides down a curved slope as shown below. What is the final speed of the block?

A) $v = \sqrt{2gy_1}$
B) $v = \sqrt{2gy_2}$
C) $v = \sqrt{2g(y_1 - y_2)}$
D) none of the above
Answer

A block of mass m slides down a frictionless curved slope as shown below. What is the final speed of the block?

![Diagram of a block sliding down a curved slope](image)

Energy conservation:

\[mgy_1 = mgy_2 + \frac{mv^2}{2} \Rightarrow v = \sqrt{2g(y_1 - y_2)} \]

\[A) \ v = \sqrt{2gy_1} \]

\[B) \ v = \sqrt{2gy_2} \]

\[C) \ v = \sqrt{2g(y_1 - y_2)} \]

\[D) \ none \ of \ the \ above \]
• Non-conservative (dissipative) forces:

 • W depends on the path

 • There is **no** potential energy U associated to a configuration such that

 \[\Delta U = -W \]

 • Examples: kinetic friction, drag
Example:

- Suppose an object is launched from A to B on a rough horizontal surface with kinetic friction coefficient μ_k.

(1) along a straight line

(2) on a circular trajectory (tied to a string)

$$W_{A \rightarrow B}^{(1)} = W_{B \rightarrow A}^{(2)}$$
\[W_{A \rightarrow B}^{(1)} = -\mu_k mgd_{AB} \]

\[W_{A \rightarrow B}^{(2)} = \int_{A}^{B} \vec{f}_k \cdot d\vec{s} = -\frac{\pi}{2}\mu_k mgd_{AB} \]

In conclusion:

\[W_{A \rightarrow B}^{(1)} \neq W_{B \rightarrow A}^{(2)} \]
A boy is initially seated on the top of a hemispherical ice mound of radius $R = 13.8$ m. He begins to slide down the ice, with a negligible initial speed (Fig. 8-45). Approximate the ice as being frictionless. At what height does the boy lose contact with the ice?
1. Energy conservation:

\[mgR = mgh + \frac{mv^2}{2} \]

\(h \) = height above the ground when losing contact

\[h = R \cos(\theta) \]

\[v^2 = 2g(R - h) \]
2. Newton's law:

\[N + F_{gy} = -ma_c \]

\[N = mg \cos(\theta) - \frac{mv^2}{R} \]

\[N = \frac{mgh}{R} - \frac{2mg(R - h)}{R} \]

\[N = mg \frac{3h - 2R}{R} \]

Note: the \(y \) direction is the radial direction.
Contact is lost when:

\[N = 0 \]

\[h = \frac{2R}{3} \]

\[N = mg \frac{3h - 2R}{R} \]