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The interaction among topological defects can induce novel
phenomena such as disclination pairs in liquid crystals and super-
conducting vortex lattices. Nanoscale topological vortices with
swirling ferroelectric, magnetic, and structural antiphase relation-
ships were found in multiferroic h-YMnO3. Herein, we report the
discovery of intriguing, but seemingly irregular configurations of
a zoo of topological vortices and antivortices. These configurations
can be neatly analyzed in terms of graph theory and reflect the nat-
ure of self-organized criticality in complexity phenomena. External
stimuli such as chemistry-driven or electric poling can induce the
condensation and eventual annihilation of topological vortex–
antivortex pairs.

The fascinating concept of topological defects permeates
ubiquitously our understanding of the early stage universe,

hurricanes, quantum matters such as superfluids and supercon-
ductors, and also technological materials such as liquid crystals
and magnets (1, 2). These topological defects cannot be disen-
tangled in analytically continuous manners. The hot and cold
spots of the cosmic microwave background, providing the infor-
mation of the early stage of the universe, have been considered as
cosmological-scale topological defects (1). Vortices in type-II
superconductors and superfluids where supercurrent swirls are
examples of quantum topological defects (3, 4). Interactions
among topological defects and the resulting configurations of
numerous topological defects can be associated with various
intriguing phenomena such as the hexagonal lattice formation
of superconducting vortices (5). In addition, beautiful optical pat-
terns in liquid crystals such as the Schlieren texture of a nematic
and the cholesteric fingerprint texture are due to assemblies of
topological defects, called disclinations, in ordered arrangements
of mesoscopic molecules (6, 7). Large-scale spatial configurations
of these topological defects have been investigated only in a lim-
ited degree (8–11). Exceptions include the cases of supercurrent
vortices or liquid crystals, but they tend to exhibit either trivial or
rather irregular configurations.

Graph theory, with its origin in the famous Seven Bridges
of Königsberg problem solved by L. Euler in 1736, has become
amatured subject, and expanded its scope of applications to many
areas with the advance of computers (12). Graphs consist of two
sets: a nonempty set of objects (vertices) and a set of the connec-
tions (edges) among the objects. Hence, graph theory is a very
useful tool to make mathematical models of many real configura-
tional problems in analyzing the nature of underlying connectivity.
This theory is widely used in science, engineering, economics, and
even in sociology. Examples range from microscopic phenomena
such as atomic bonding in chemistry (13) to grander applications
such as connectivity of neuron networks of cerebral cortexes (14)
and the World Wide Web (15).

New topological defects with simultaneous ferroelectric and
magnetic nature have been identified in hexagonal REMnO3

(RE, rare earths) (16)—a multiferroic where ferroelectricity
and magnetism coexist and are intriguingly coupled to each other
(17–19). Ferroelectricity in REMnO3 is driven by a structural
phase transition associated with the mismatch of RE-O and
Mn-O layers (20–22). It turns out that a structural trimerization

is also induced by the structural transition, and three types (α, β,
and γ) of structural antiphase domains can result from the trimer-
ization (23). The topological defect in REMnO3 consists of six
neighboring domains in conjunction with a convergence of both
structural antiphase and ferroelectric domains accompanying
a sense of rotation. One of the important ingredients for the
formation of this topological structure is interlocking of structural
and antiphase domain walls. Because it has been known that
ferroelectric domain walls pin antiferromagnetic domain walls in
hexagonal REMnO3 (18), the topological defect is expected to
accompany six antiferromagnetic domains with a sense of rotation
at low temperatures. Thus, it is legitimate to call it a multiferroic
vortex (24). Herein, we report the discovery of the self-organiza-
tion of topological vortices and antivortices in h-YMnO3 and its
rich physical nature. Furthermore, we found that the connectivity,
rather than metric properties such as lengths or sizes, of the self-
organized complex network exhibits definite regularities and can
be neatly analyzed in terms of mathematical graph theory.

Results and Discussion
Using an optical microscope, we have observed an interesting
network-like domain pattern on a hexagonal surface of a chemi-
cally etched YMnO3 single crystal as shown in Fig. 1A (25). At
first glance, the domain pattern appears to form in a random and
irregular manner. However, upon careful inspection, a landscape
of topological order and regularity is revealed, where every closed
connected region (face) is surrounded by an “even” number of
vertices connected together by edges, exactly three of which are
incident on each vertex. The coloring of maps without having
adjacent regions in the same color has been considered for a long
time, and this process has become an important part of graph
theory. The famous four-color theorem states that all regions
of every two-dimensional map can be colored with only four col-
ors in a manner that no two adjacent regions have the same color
(26). Mathematically, this four-color theorem is restated as “all
faces of every planar map can be four-proper-colorable.” Note
that a planar graph is a graph that can be drawn on the plane
without making any crossings of edges except at the vertices.
When a map has met certain regularities or rules, the required
number of colors can be less than four. This coloring of regions
of a pattern has inspired us to understand the rule for the orga-
nization of our domain pattern.

We found that every face of Fig. 1A can be properly colored
using three different colors (light red, light blue, and light green)
as shown in Fig. 1B. Additionally, focusing only on edges, we
found that every edge can also be properly colored with three
colors (red, blue, and green) as clearly depicted in the inset of
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Fig. 1B. A face with N vertices on its boundary is called an N-gon.
A K-valent vertex denotes that K edges are incident to the vertex,
and a K-valent graph means that all vertices in the graph are
K-valent. Then it has been mathematically proven that all faces
of a three-valent graph is three-proper-colorable if and only if all
faces are composed of even-gons (Table 1) (27). This theorem is
certainly consistent with our observation that all faces in Fig. 1B
are colored with three colors without having adjacent faces in the
same color. In addition, all edges of a three-valent graph with
even-gons are three-proper-colorable (28), which is also consis-
tent with our observation that all edges in Fig. 1B are colored with
three colors without having adjacent edges in the same color.

Because YMnO3 is ferroelectric, electric poling, i.e., applying
large electric voltages, can change the surface domain patterns.
However, we found that the intriguing connectivity of our patterns,
i.e., the nature of a three-valent graph with even-gons, remains
intact with electric poling. The optical microscope image of the
domain pattern after electric poling and chemical etching shown
in Fig. 2A exhibits a complex network-like pattern of dark lines.
The seemingly irregular pattern does form a three-valent planar
graph with even-gons, and it exhibits an interesting evolution from
the middle (left of Fig. 2A) to the edge (right of Fig. 2A) of the
specimen surface. The complex network-like pattern near themid-
dle becomes less dense and then turns into a curved stripe pattern
toward the edge of the specimen. Note that wider-view images of
both sides of the specimen are shown in Fig. S1, exhibiting that the
curved stripes tend to be perpendicular to the edge of the speci-
men. It appears that the poling occurs in a highly inhomogeneous

manner and no significant poling effect occurs near the middle of
the specimen surface. The presence of significant conduction and
a large resistivity anisotropy in YMnO3 probably plays an impor-
tant role in the polarization-flip-related electric discharging (16).
The electric discharging, which partially occurs within the speci-
men, seems to push domains and walls through the crystal edge,
which results in the domain pattern with stripes perpendicular to
the crystal edge.

Compared with submicron-scale optical microscope images,
transmission electron microscopy (TEM) images with much high-
er spatial resolution reveal that the network-like domain patterns
of YMnO3 form six-valent, rather than three-valent, graphs with
even-gons. The TEM dark-field image in the inset of Fig. 2A,
taken using the 13̄1 diffraction spot (the hexagonal P63cm nota-
tion) of a specimen near the surface of a poled crystal, indicates
that the edges or dark lines in the optical microscope image of
Fig. 2A are indeed narrow domains rather than walls. The TEM
image additionally demonstrates that one vertex consists of six
distinguishable domains emerging from one point, and that the
width of three alternating domains out of six domains is much
narrower than the others. Furthermore, each vertex can be iden-
tified as a vortex or an antivortex according to its domain vorticity
(αþ-β−-γþ-α−-βþ-γ− or αþ-γ−-βþ-α−-γþ-β−), as shown in the inset
of Fig. 2A (24). The typical size of these narrow domains in the
TEM image is on the order of 100 nm. The atomic force micro-
scope (AFM) image of an etched surface in Fig. S2 shows that
the dark lines in Fig. 2A are trenches with width of ∼130 nm
and depth of ∼25 nm, which are consistent with the TEM result.
Note that because of the different etching rates depending on
the polarization direction normal to the surface (29), the upward-

Fig. 1. Ferroelectric domain pattern and coloring of the pattern in YMnO3.
(A) Ferroelectric domain pattern on the surface of an YMnO3 crystal, imaged
using an optical microscope. The upward-polarization and downward-polar-
ization domains of the crystal were etched selectively utilizing phosphoric
acid. (B) Proper coloring of faces (edges) with three colors; light red (red),
light blue (blue), and light green (green). All adjacent edges or faces have
different colors. The inset shows an enlarged area, denoted with a pink
rectangle, for the clarification of the colors of adjacent edges and faces.

Fig. 2. Various configurations of nanoscale topological vortices and antivor-
tices resulting in a large-scale ferroelectric domain pattern in YMnO3. (A) Fer-
roelectric domain pattern on the surface of a chemical-etched YMnO3 crystal
after electric poling imaged, using an optical microscope. The inset shows a
dark-field TEM image of an YMnO3 crystal. Six distinguishable domains are
merged at one point, and the width of three alternating domains out of six
domains is much narrower than that of the other domains. Vorticity of the
domain configuration (αþ-β−-γþ-α−-βþ-γ− or αþ-γ−-βþ-α−-γþ-β−) characterizes
vortex vs. antivortex. This TEM image indicates that the dark lines in Fig. 2A
are narrow domains, rather than walls. (B–D) The schematics of two-, four-,
and six-gons with one, two, and three vortex–antivortex pairs, respectively.
Insets show real examples of two-, four-, and six-gons in Fig. 2A.

Table 1. The number of colors for proper coloring of three- and
six-valent planar graphswhose faces (or domains) are all even gons

Valence Vertex coloring Edge coloring Face coloring

3 2 3 3
6 2 6 2
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and downward-polarization domains could be different in height
after chemical etching. In the case of YMnO3 crystal, the narrow
domains have been confirmed to be upward-polarization (+)
domains (16). These trenched narrow + domains mean that the
+ domains were etched faster than downward-polarization (−)
domains. Note that the narrow bright lines sandwiched between
two dark lines in the optical microscope image in Fig. 1A corre-
spond to narrow domains and the dark lines surrounding the
bright lines are adjacent walls of the trenches. We have observed
the Fig. 1A-type images (rather than Fig. 2A-type) when a thin
layer of liquid remains after chemical etching. Fig. 2 B–D show
the schematic diagram of two-, four-, and six-gons with six-
valence, respectively. The insets were taken from the real optical
image in Fig. 2A for comparison.

Graph theoretical analysis of our patterns alone leads to a
number of important conclusions. Mathematically, all vertices
of a six-valent planar graph with even-gons are two-proper-color-
able (Table 1), and every two-proper-vertex-colorable graph can
be considered as a bipartite graph where each vertex can be as-
signed to one of two disjoint subsets such that each edge connects
between one element in one subset and another element in the
other subset (30, 31). If one subset is the collection of vortices, then
the other subset corresponds to the antivortex collection. Domain
patterns we have observed are always six-valent planar graphs with
even-gons. This universality, combined with the bipartite nature,
demonstrates the following: (i) Only two types of vertices (i.e.,
topological defects) exist, and there are no other types. They are
physically topological vortices and antivortices, and any other
types of defects do not exist. For example, topological defects such
as αþ-β−-“γþ-α−-γþ”-β− or αþ-β−-αþ-β− do not exist. (ii) Any link
between vertices is the connection between two different types,
which corresponds to the pairing of vortices and antivortices.
Any direct links between vortices or antivortices themselves do
not exist. An extended view of the dashed area in Fig. 2A is shown
in Fig. 3A, and the schematic of the green-rectangular area in

Fig. 3A is displayed in Fig. 3B. In terms of a six-valent graph,
the colored edges in Fig. 3B are narrow + domains. The vor-
tex–antivortex pairing is clearly demonstrated in Fig. 3B in the
sense that all vertices are marked with blue or red dots in a proper
manner. Using graph theoretical analysis, we can also conclude
that there exists only “three” times “two” types of structural do-
mains. If we consider narrow + domains as edges, a six-valent
graph will become a three-valent graph. Then, the fact that all
faces (or edges) of a three-valent graph with even-gons are three-
proper-colorable (Table 1) means physically that all broad − (or
narrow +) domains can be assigned with three types of structural
antiphase domains without having adjacent domains in the same
structural antiphase. Note that observed domain patterns are
always six-valent graphs with even-gons. This universality, com-
bined with above-mentioned graph theoretical analysis, demon-
strates that there exists only “three” times “two” types of structural
domains. Physically, “three” corresponds to three structural anti-
phase domains and “two” is related with the presence of ferroelec-
tric + and – domains. We also conclude that there exist no free
structural antiphase boundaries or ferroelectric phase boundaries,
but they are always interlocked to each other.

The statistical distribution of even-gons, shown in Fig. 3C,
reveals the characteristic of self-organized criticality. The areas
enclosed by the orange, purple, and green rectangles in Fig. 3A
are analyzed in terms of their statistical distribution of even-gons.
Note that for the statistical analysis, we have constructed a
“finite” planar graph for each rectangular area by adding artificial
edges outside of the rectangles in a manner that all vertices are
three-valent and all faces are even-gons. It should be emphasized
that each area has a number of “isolated” finite graphs, in addi-
tion to the main connected graph. These isolated graphs are
shown in Fig. S4. As shown in Fig. 3C, the distribution of even
N-gons in the main graphs shows a power-law behavior (1∕Na)
with exponent values varying from 1.40 (orange rectangle) to
1.98 (green rectangle). The exponent tends to increase when
the domain density decreases, i.e., better poling occurs. The
1∕Na (0 < a < 2) distribution has been observed in various phy-
sical phenomena with self-organized criticality such as the occur-
rence rate of snow avalanches, earthquakes, and the frequency
dependence of noise spectra (32–35). These dissipative systems
tend to organize into critical states where the characteristic length
and timescales are absent (34). We note that the increase of
power-law exponent as the domain density decreases may stem
from the increasing effect of the finite size of sampling area,
which limits the number of large N-gons. Thus, the intrinsic
N-gons distribution for a large sampling area may approach
the 1∕N behavior, resembling the celebrated 1∕f noise behavior.
We would like to emphasize that no one number is special in the
N-gon distribution, i.e., there exists no characteristic N-gon. For
example, a three-valent graph with “six-gons,” exhibiting a hon-
eycomb-like configuration, does have the colorability identical
with that of the patterns in Figs. 1A, 2A, and 3A. Thus, paired
vortices and antivortices, in principle, can form a three-valent
graph with six-gons where one edge corresponds to each pairing.
However, there exists nothing special at N ¼ 6 in the N-gon dis-
tribution. This scale-free behavior truly reflects the unique beauty
of our domain patterns and is consistent with the nature of self-
organized criticality.

A sequential decomposition of higher-gons into lower-gons
upon electric poling can occur through the annihilation of
vortex–antivortex pairs (see SI Text, Sect. S5 and Fig. S5), and
may be responsible for the reduction of the N-gon density as the
analyzed area near the stripe domain area. This pair annihilation
is accompanied by the disappearance of the narrow domain(s)
that connects the vortex and antivortex directly. The sequential
decomposition behavior can be also observed in the statistical
distribution of the number of even-gons in isolated graphs (see
Fig. S4) in various areas, as shown in the inset of Fig. 3C. Note

Fig. 3. The electric poling effect of the configuration of numerous
topological vortices and antivortices in YMnO3, indicating the annihilation
of vortex–antivortex pairs. (A) Optical microscopy image of the ferroelectric
domain pattern on the surface of a chemical-etched YMnO3 crystal after
electric poling—an enlarged area denoted with dashed lines in Fig. 2A.
The evolution of domain patterns from random to stripe domains is analyzed
at the areas shown with orange, blue, and green rectangles. (B) Schematic
network of dark lines in the green-rectangular area in Fig. 3A. The details
of this schematic are discussed in SI Text, Sect. 3, Fig. S3, and Table S1. (C)
The power-law distribution of even-gons at the colored-rectangular areas
in Fig. 3A. Each color for lines and data points matches with that of each
rectangle in Fig. 3A. The inset shows the distribution of isolated even-gons,
including zero-gons without any surrounding vertices (surrounded by one
edge).
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that zero-gons, regions surrounded by only one edge without any
vertices, are frequently observed as isolated graphs. These zero-
gons are difficult to be removed, possibly due to the lack of the
annihilation of vortex–antivortex pairs. It appears that the poling
of the zero-gons can be achieved by pushing a part of the edge of
zero-gons to the outside of a crystal edge, leading to the forma-
tion of a stripe domain pattern near the crystal edge.

It turns out that the presence of “narrow” + domains on the
surfaces of YMnO3 crystals, displayed in Figs. 1A, 2A, and 3A,
and Fig. S1, is due to a self-poling effect, probably due to oxygen
off-stoichiometry near the surfaces (36). In general, hexagonal
REMnO3 system exhibits hole-type charge conduction, probably
due to cation deficiency or excess oxygen (37). We found that
both flat surfaces of as-grown plate-like YMnO3 crystals show
narrow domains with upward-polarization near the surfaces
(see Fig. S1). On the other hand, when YMnO3 crystals were an-
nealed in oxygen atmosphere at ∼900 °C, the + domains and –

domains on the surfaces show a roughly 50∶50% distribution in
the entire area of both flat surfaces. These behaviors can be seen
in Fig. 4, where we display three-dimensional illustrations with
real AFM images, optical images, and the schematics correspond-
ing to the optical images. In as-prepared crystals, the surfaces,
compared with the bulk, tend to have more oxygen vacancies
or less oxygen excess, and this reduced oxygen content near sur-
faces favors energetically the presence of the tail of polarization
near surfaces, inducing broad − and narrow + domains near sur-
faces. This kind of self-poling induced by oxygen off-stoichiome-
try is well documented in other ferroelectrics (36). Note that the
narrow + (broad −) domains on the surfaces of as-grown crystals

remain to be narrow (broad) after electric poling even though the
overall domain patterns on the surfaces can change as discussed
earlier, and the dominant electric poling appears to occur in the
interior of crystals (see SI Text, Sect. S7 and Fig. S7). Lastly, we
emphasize that as the schematic in Fig. 4C demonstrates, the
roughly 50∶50% mixture pattern also shows a six-valent graph
with even-gons. However, in this graph, both + and − domains
do have various even-gons. On the contrary, the patterns in
Figs. 1A, 2A, and 3A, and the schematic in Fig. 4F correspond to
six-valent graphs where − broad domains show various even-
gons, but narrow + domains are always two-gons.

The domain patterns in YMnO3, where ferroelectricity, mag-
netism, and structural distortions intertwined to each other, are
found to be two types as depicted in Fig. 4: patterns (type I)
with the roughly equal distribution of + and − domains, and pat-
terns (type II) with mixtures of narrow + and broad − domains.
The formation of type-II patterns stems from chemistry-driven
self-poling, and we were able to obtain much larger-range and
better-resolution images of type-II patterns than those of type-
I patterns, so we have analyzed type-II patterns in great detail,
as discussed earlier. Graph theoretical comparison between
type-I and type-II patterns indicates the interesting possibility
of the condensation of vortex–antivortex pairs, induced by chem-
istry-driven self-poling. As evident in Fig. 4C, type-I patterns
form six-valent graphs with even-gons (all possible + even-gons
and also all possible− even-gons), the vertices and faces of which
are two-proper-colorable. These patterns do have symmetry
under the change of + and − signs. On the other hand, type-II
patterns correspond to six-valent graphs with all possible − even-
gons, but narrow + two-gons only. Self-poling induces the transi-
tion from type-I to type-II patterns, and thus the symmetry under
the + and− sign change is broken after self-poling. Furthermore,
if we consider the narrow two-gons connecting vortices and anti-
vortices as edges, then “the six-valent graph with narrow + two-
gons and broad − all-even-gons” can be readily considered as “a
three-valent graph with all-even-gons.” This compactification of
valence can occur only in type-II patterns, not in type-I patterns.
High-gons are possibly associated with large energy associated
with, e.g., strain, so conceptually they can be considered as ex-
cited states, relative to the ground state of two-gons. Unlike
type-I patterns, all vortices and antivortices in type-II patterns
are paired, i.e., linked by one or two narrow + two-gons, which
may result in the lowest total energy.

Therefore, the symmetry breaking under the + and − sign
change by self-poling can be considered as “the condensation
of topological vortex-antivortex pairs.” Note that this condensa-
tion, induced by self-poling, can occur through continuous
merging of domain walls without changing the number of vortices
and antivortices. On the other hand, the electric poling of type-II
patterns can induce the vortex–antivortex annihilation as dis-
cussed earlier. We found that electric poling of type-I patterns
is difficult due to a drastic increase of coercivity and wall pinning
after oxygen annealing. Finally, we note that the transition from
“+ all even-gons with a power-law distribution of even-gons” to
“+ two-gons only” induced by self-poling resembles collapsing a
sandpile, in the sense that both may be involved with a process
from a self-organized critical state to the ground state induced by
external stimulus.

Conclusion
The intriguing ferroelectric and structural antiphase domain pat-
terns in YMnO3 demonstrate the presence of graph-theoretically
regular and nontrivial arrangement of numerous topological
defects and their response to external stimuli, which can be ob-
served simply under an optical microscope. Graph theoretical
consideration of the evolution of the domain patterns to chem-
istry-driven or electric poling indicates condensation and also
annihilation of topological vortices–antivortices pairs induced

Fig. 4. Two types of the configuration of copious topological vortices and
antivortices in YMnO3, demonstrating the condensation of numerous
vortex–antivortex pairs. (A and D) Three-dimensional illustrations of distinct
ferroelectric domain structures with real AFM images for O2-annealed and
as-grown YMnO3 crystals, respectively. This difference originates from a
chemistry-driven self-poling effect due to the low oxygen content on the sur-
face of as-grown crystals. This self-poling of as-grown crystals favors energe-
tically the presence of wide downward-polarization domains near surfaces.
Note that the cartoons also depict vortex or antivortex cores curved along the
c axis (see SI Text, Sect. 6 and Fig. S6). (B and C) Optical microscope image and a
schematic of the surface of an O2-annelaed YMnO3 crystal after chemical
etching, respectively. These pictures show a type-I pattern with a roughly
equal distribution of upward- and downward-polarization domains. (E and F)
Optical microscopy image (the area denoted with white dashed lines in
Fig. 3A) and a schematic of the surface of a self-poled YMnO3 crystal after
chemical etching, respectively. These pictures display a type-II pattern with
narrow + and broad − domains. The difference between type-I and type-II
patterns reflects the condensation of vortex–antivortex pairs.
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by external stimuli. Most of our findings are not possible without
the large-range domain images and graph theoretical analysis.
Thus, our results undoubtedly provide a paradigm of understand-
ing nontrivial domain patterns in real materials utilizing graph
theory.

Materials and Methods
Thin YMnO3 single crystals with a few square millimeters in in-plane size
were grown using a flux method with a mixture of 90 mol % of Bi2O3

and 10 mol % of YMnO3 powders, which was cooled from 1,200 °C with
the rate of 2 °C∕h. To observe domain configurations using an optical micro-
scope, thin plate-like crystals with two wide natural facets normal to the crys-
tallographic c axis of hexagonal YMnO3 (P63cm) were etched chemically in
phosphoric acid for 30 min at 130 °C. All optical images were taken at room
temperature. It turns out that the surfaces with the positively charged head
part of electric polarization are etched faster than those with the negatively
charged tail part. In order to investigate the role of electric poling on the
domain configuration of YMnO3 crystals, we applied a large electric field

of ∼500 kV∕cm, which is significantly larger than the coercive field
(∼75 kV∕cm) of the ferroelectric polarization loop of as-grown YMnO3, to
a plate-like specimen with two Ag electrodes (16). After poling, the Ag elec-
trodes were removed mechanically, and then the poled YMnO3 single crystal
was etched chemically to reveal domain patterns. The TEM observation was
carried out using both JEOL-2010F and JEOL-2000FX TEM on REMnO3

(RE ¼ Y, Ho) single crystals at room temperature. Specimens for dark-field
TEM imaging were prepared utilizing Ar ion milling at the liquid-nitrogen
temperature. The AFM observation was carried out using a Nanoscope IIIA
(Veeco) on the surfaces of chemically etched YMnO3 single crystals.
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