Central Questions in Nucleon Structure

Werner Vogelsang BNL Nuclear Theory

QCD and Hadron Physics Town Meeting, 01/13/2007

Exploring the nucleon: Of fundamental importance in science

NuTeV anomaly, ...

We can probe the quark-gluon structure of the Nucleon in short-distance processes:

■ Diverse probes: DIS, DVCS, Drell-Yan, pp→jetX, ...

- What are the momentum distributions of quarks, anti-quarks, and gluons ? p = x P
- How are quarks and gluons distributed spatially ?

- How do partons carry the proton spin-1/2 ? (Spins & orbital angular momenta)
- What difference does
 vs.
 make ?
 What novel features arise ?
- How are quarks and gluons correlated ?

These are central questions of the field. The challenge is: Map out the Nucleon Its complete spin, flavor, gluon landscape

- We have a pretty good picture of some aspects
- We are learning about others
- We are still in the dark in many cases

We'll have a good chance to get all the answers with present and next-generation facilities !

Momentum distributions of quarks and gluons

An important part of our picture of the nucleon:
 Gluons rule at small-x !

• We know a lot, but ...

but ... some aspects little understood, for example:

sea quarks and gluon at high-x, valence at very-high-x

$$F_L \propto \frac{\alpha_s}{2\pi} x \int_x^1 \frac{d\xi}{\xi} \xi(1-\xi) g\left(\frac{x}{\xi}, Q^2\right) + \dots$$

One observable among many: $dF_2/dLog(Q^2)$, $ep \rightarrow jet + jet + X$, charm, ...

Helicity structure of the Nucleon

A major motivation : Explore the proton spin !

"Quotable" properties of the proton

EMC, SMC, E142-155, HERMES

Hirai, Kumano, Saito

- Rests on a number of things:
 - small-x extrapolation of structure function
 - at small-x, typically Q² small as well. Higher twists?

To really nail it down, need measurements at lower x. And: at current x, but higher $Q^2 \rightarrow EIC$

• use of SU(3) symmetry:

$$\int_{0}^{1} dx g_{1} = \frac{1}{9} \Delta \Sigma + \frac{1}{12} \begin{bmatrix} \Delta u + \Delta \bar{u} - \Delta d - \Delta \bar{d} \end{bmatrix} + \frac{1}{36} \begin{bmatrix} \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} - 2(\Delta s + \Delta \bar{s}) \end{bmatrix}$$

$$g_{A} = 1.257 \pm \dots$$

$$3F - D = 0.575 \pm 0.05$$
Bjorken

• if all true, current picture is:

- is it correct ?
- would like to know more:

 $\Delta \bar{u}$ vs. $\Delta \bar{d}$ vs. $\Delta \bar{s}$ etc.

• Important applications for models :

Many models predict $\Delta \bar{u} > 0$ $\Delta \bar{d} < 0$

Thomas, Signal, Cao; Holtmann, Speth, Fässler; Diakonov, Polyakov, Weiss; Glück, Reya; Schäfer, Fries; Kumano; Wakamatsu; ...

Various avenues for addressing these questions

In lepton scattering : "SIDIS"

HERMES

• Major topic at Jlab-12 GeV

• Bjorken's sum rule

$$\int_0^1 \mathrm{d}x \, g_1^{ep-en}(x,Q^2) = \frac{1}{6} \frac{g_A}{g_V} \bigg\{ 1 - \frac{\alpha_s(Q^2)}{\pi} - \frac{43}{12} \frac{\alpha_s^2(Q^2)}{\pi^2} - 20.215 \frac{\alpha_s^3(Q^2)}{\pi^3} \bigg\}$$

high-order perturbation theory

$$+\frac{M^2}{Q^2}\int_0^1 x^2 \,\mathrm{d}x \left\{\frac{2}{9}g_1^{ep-en}(x,Q^2) + \frac{1}{6}g_2^{ep-en}(x,Q^2)\right\}$$

target-mass corrections

$$-\frac{1}{Q^2}\frac{4}{27}\mathcal{F}^{u-d}(Q^2)$$
 Twist-

Twist-4 matrix elements
$$\sim~\langle\,ar{q} ilde{F}q\,
angle$$

• Precision QCD. Currently tested at ~10%. Can it be tested at ~1 or 2% ?

• NOW:

Challenge will be to really extract Δg and its integral:

$$\Delta \sigma = \sum_{q} \int dx_{g} \int dx_{q} \Delta g(x_{g}, p_{T}) \Delta q(x_{q}, p_{T}) \Delta \hat{\sigma}^{qg}(x_{g}, x_{q}, p_{T}, \alpha_{s}(p_{T})) + \dots$$

$$\rightarrow \text{Need "Global analysis"}$$

Eventually, for integral will likely need additional information, in particular from smaller x

- RHIC at 500 GeV, and with jet+jet, gamma+jet at forward kinematics
- An Electron-Ion Collider !

A. Bruell, R. Ent

$rac{d\,g_1}{d\log(Q^2)} \propto -\Delta g(x,Q^2)$ at small x

 $E_e = 7$, $E_p = 150$ at $L = 10^{33}$

A. Bruell, R. Ent

What's the structure of a Transversely polarized Nucleon ?

Ralston, Soper; Jaffe, Ji; ...

• in helicity basis:

Helicity-flip !

- the physics involved:
 - * "odd chirality" \rightarrow helicity-flip, χSB

* tensor charge

$$\langle \mathbf{P} \, | \, \bar{\mathbf{q}} \, \mathbf{i} \, \sigma^{\mu\nu} \, \gamma^{\mathbf{5}} \, \mathbf{q} \, | \, \mathbf{P} \, \rangle \, = \, \int_{\mathbf{0}}^{\mathbf{1}} \mathbf{dx} \, [\, \delta \mathbf{q}(\mathbf{x}) \, - \, \delta \bar{\mathbf{q}}(\mathbf{x}) \,]$$

* difference to helicity probes relativistic / dynamical effects

• Opportunities for measurement ?

* not in inclusive DIS, but:

* this effect actually appears to be there : HERMES

• information on Collins fragm. fct. has become available from BELLE in $e^+e^- \rightarrow \pi\pi X$

The future :

- SIDIS at COMPASS, Jlab-12 GeV
- Collins-type asymmetries at RHIC
- Drell-Yan:

RHIC / RHIC-II GSI, J-PARC

• azimuthal asymmetries in SIDIS at EIC

Transverse spin offers further new insights into Nucleon structure.

Where would this show up ?

In pp scattering: involved (in disguised form) in large "left-right" asymmetries

What's the physics of the Sivers functions ?

Probes overlap of proton wave fcts. with $J_z = \pm 1/2$

- \rightarrow involves orbital angular momentum
- T-invariance of QCD: they involve a "rescattering" in the color field of the remnant

Brodsky, Hwang, Schmidt; Collins; Belitsky, Ji, Yuan; Boer, Mulders, Pijlman

Attractive !

• intuitive (model-based) picture :

Burkardt

profound physics implication:

→ process-dependence of Sivers functions

$Sivers|_{DIS} = -Sivers|_{DY}$

 hugely important in QCD -- tests much of what we know about description of hard processes

Many avenues for important measurements:

- Drell-Yan RHIC / RHIC-II GSI, J-PARC
- correlations in $pp \rightarrow jet + jet X$ at RHIC (now data!)
- detailed studies of azimuthal asymmetries in SIDIS at EIC at high Q²

What's the spatial structure of the Nucleon ?

Over the last decade, theory has understood that parton distributions and form factors are special cases of a much more powerful representation of nucleon structure: "Generalized Parton Distributions"

Müller, Robaschik; Ji; Radyushkin

- x: average quark momentum fracⁿ
- ξ : "skewing parameter" = $x_1 x_2$
- *t*: 4-momentum transfer²

At EIC: spatial distribution of sea and glue

• Quantify orbital motion of partons in nucleon

$$egin{array}{rll} J_q &=& rac{1}{2} \lim_{t
ightarrow 0} \int dx \, x \, \left[H_q(x,\xi,t) \,+\, E_q(x,\xi,t)
ight] & {f J}{f i} \ &=& rac{1}{2} \Delta q \,+\, L_q \end{array}$$

+L+glue

GPDs have potential to take our picture of the nucleon to a new level.

HE setup: $e^{+/-}$ (10 GeV) + p (250 GeV) L = 4.4 · 10³² cm⁻²s⁻¹ 38 pb⁻¹/day LE setup: $e^{+/-}$ (5 GeV) + p (50 GeV) L = 1.5 · 10³² cm⁻²s⁻¹ 13 pb⁻¹/day

Sandacz

Precision of DVCS unpolarized cross sections

• also: gluon imaging with exclusive J/Ψ

Frankfurt, Strikman, Weiss

The challenge is: Map out the Nucleon Its complete spin, flavor, gluon landscape

We'll have a good chance to get all the answers with present and next-generation facilities !

• a little further into the future: prompt photons

RHIC offers great possibilities to probe Δg :

	Reaction	Dom. partonic process	probes	LO Feynman diagram	
	$\vec{p}\vec{p} \to \pi + X$ [61, 62]	$ec{g}ec{g} ightarrow gg$ $ec{q}ec{g} ightarrow qg$	Δg	y e e e e e	Jäger,Schäfer, Stratmann,WV
	$\vec{p}\vec{p} \rightarrow \text{jet}(s) + X$ [71, 72]	$ec{g}ec{g} ightarrow gg \ ec{q}ec{g} ightarrow qg$	Δg	(as above)	Jäger,Stratmann,WV; Signer et al.
Δg	$\vec{p}\vec{p} \rightarrow \gamma + X$ $\vec{p}\vec{p} \rightarrow \gamma + \text{jet} + X$ $\vec{p}\vec{p} \rightarrow \gamma\gamma + X$ $[67, 73, 74, 75, 76]$	$egin{aligned} \vec{q}ec{g} & ightarrow \gamma q \ ec{q}ec{g} & ightarrow \gamma q \ ec{q}ec{q} & ightarrow \gamma \gamma \end{aligned}$	$\begin{array}{c} \Delta g \\ \Delta g \\ \Delta q, \Delta \bar{q} \end{array}$		Gordon,WV; Contogouris et al.; Gordon, Coriano
	$\vec{p}\vec{p} \rightarrow DX, BX$ [77]	$ec{g}ec{g} ightarrow car{c}, bar{b}$	Δg	Jourge	Stratmann, Bojak
٨ā	$\vec{p}\vec{p} \rightarrow \mu^+\mu^- X$ (Drell-Yan) [78, 79, 80]	$\vec{q}\vec{ar{q}} ightarrow \gamma^* ightarrow \mu^+\mu^-$	$\Delta q, \Delta \bar{q}$	$\rightarrow \sim \sim$	Weber; Gehrmann;
4	$ \begin{array}{c} \vec{p}\vec{p} \rightarrow (Z^0, W^{\pm})X\\ p\vec{p} \rightarrow (Z^0, W^{\pm})X\\ [78] \end{array} $	$\vec{q} \vec{\bar{q}} \to Z^0, \vec{q}' \vec{\bar{q}} \to W^{\pm}$ $\vec{q}' \vec{q} \to W^{\pm}, q' \vec{\bar{q}} \to W^{\pm}$	$\Delta q, \Delta \bar{q}$	>	Kamal

NLO corrections known in all cases.

